Bryan wrote:

 From the Jupiter-T TU60-D120 datasheet
 Figure 1-3 (next page) shows the typical 1PPS performance of the Jupiter-T GPS 
receiver. The 10 kHz output is also available from the receiver and is phase 
coherent with the 1PPS signal. This output is made available for functions such 
as phase locking of crystal oscillators, frequency synthesisers, and similar 
applications.

Yes, but....  The devil is in the details.

The fact that one thing is phase-locked to another does not necessarily mean it puts out a good, clean signal. At short time scales (tau less than ~100 seconds), the PPS signal from any GPS receiver is noisy. At tau = 1second, it is shockingly noisy (~5e-9), and it decreases by a nominal factor of 10 per decade as the averaging time (tau) is made longer. By tau = 1000 seconds, it is pretty respectable (~2e-12 if the GPS rx designers did their job well).

So, the trick is to use the noisy source (GPS) to discipline the clean source (OCXO) very gently and very slowly. That way, the OCXO remains in control of the output at short tau (< 100 to 1000 seconds), while it is kept on-frequency over the long term by the GPS. This requires a PLL control loop with a very long time constant (equivalently, a very low cutoff frequency, in the microHertz to milliHertz region). It is not practical to build analog filters with time constants that long, so one must design a digital filter (far from impossible, but not the sort of thing most hobbyist GPSDO designers are willing to undertake).

If you use a control loop with a short time constant, then the quiet OXCO just follows the noisy reference source and doesn't improve anything.

If a GPS rx puts out a phase-locked audio or RF frequency (10kHz or 10MHz in the examples we've been discussing), the question becomes whether that output has better stability (lower jitter) over short averaging times than the PPS. The usual way to do this would be to use a clean local oscillator disciplined in a very slow loop -- the same thing discussed above, only at 10kHz rather than 10MHz. To my knowledge, the Jupiter receivers don't have internal OCXOs devoted to this, so if the 10kHz output really does have better stability at short tau than the PPS, it isn't exactly obvious how the designers did it. Presumably, they would need a very high-Q resonator of *some* sort.

Best regards,

Charles

_______________________________________________
time-nuts mailing list -- time-nuts@febo.com
To unsubscribe, go to https://www.febo.com/cgi-bin/mailman/listinfo/time-nuts
and follow the instructions there.

Reply via email to