Thanks all for replying!
I tried with both 2.27.0 and 2.28.0 and the error was the same. I managed
to make some progress using the second option proposed by Cham and am now
getting the following error:

> Traceback (most recent call last):
> File "predict.py", line 163, in <module>
> run()
> File "predict.py", line 159, in run
> p.run(False).wait_until_finish()
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
> line 559, in run
> return self.runner.run_pipeline(self, self._options)
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/dataflow/dataflow_runner.py",
> line 638, in run_pipeline
> self.dataflow_client.create_job(self.job), self)
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/utils/retry.py",
> line 260, in wrapper
> return fun(*args, **kwargs)
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/dataflow/internal/apiclient.py",
> line 680, in create_job
> return self.submit_job_description(job)
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/utils/retry.py",
> line 260, in wrapper
> return fun(*args, **kwargs)
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/dataflow/internal/apiclient.py",
> line 747, in submit_job_description
> response = self._client.projects_locations_jobs.Create(request)
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/dataflow/internal/clients/dataflow/dataflow_v1b3_client.py",
> line 667, in Create
> config, request, global_params=global_params)
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apitools/base/py/base_api.py",
> line 731, in _RunMethod
> return self.ProcessHttpResponse(method_config, http_response, request)
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apitools/base/py/base_api.py",
> line 737, in ProcessHttpResponse
> self.__ProcessHttpResponse(method_config, http_response, request))
> File
> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apitools/base/py/base_api.py",
> line 604, in __ProcessHttpResponse
> http_response, method_config=method_config, request=request)
> apitools.base.py.exceptions.HttpBadRequestError: HttpError accessing <
> https://dataflow.googleapis.com/v1b3/projects/fit-recommend-system-int/locations/us-central1/jobs?alt=json>:
> response: <{'vary': 'Origin, X-Origin, Referer', 'content-type':
> 'application/json; charset=UTF-8', 'date': 'Wed, 31 Mar 2021 19:14:32 GMT',
> 'server': 'ESF', 'cache-control': 'private', 'x-xss-protection': '0',
> 'x-frame-options': 'SAMEORIGIN', 'x-content-type-options': 'nosniff',
> 'alt-svc': 'h3-29=":443"; ma=2592000,h3-T051=":443";
> ma=2592000,h3-Q050=":443"; ma=2592000,h3-Q046=":443";
> ma=2592000,h3-Q043=":443"; ma=2592000,quic=":443"; ma=2592000; v="46,43"',
> 'transfer-encoding': 'chunked', 'status': '400', 'content-length': '288',
> '-content-encoding': 'gzip'}>, content <{
> "error": {
>     "code": 400,
>     "message": "Dataflow Runner v2 requires a valid FnApi job, Please
> resubmit your job with a valid configuration. Note that if using Templates,
> you may need to regenerate your template with the '--use_runner_v2'.",
>     "status": "INVALID_ARGUMENT"
>     }
> }



On Tue, Mar 30, 2021 at 11:27 PM Chamikara Jayalath <[email protected]>
wrote:

> I would suggest also including a more recent fix [1] or using
> the workaround mentioned in [2].
>
> Thanks,
> Cham
>
> [1] https://github.com/apache/beam/pull/14306
> [2]
> https://issues.apache.org/jira/browse/BEAM-11862?focusedCommentId=17305920&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-17305920
>
> On Tue, Mar 30, 2021 at 1:23 PM Brian Hulette <[email protected]> wrote:
>
>> +Chamikara Jayalath <[email protected]>
>>
>> Could you try with beam 2.27.0 or 2.28.0? I think that this PR [1] may
>> have addressed the issue. It avoids the problematic code when the pipeline
>> is multi-language [2].
>>
>> [1] https://github.com/apache/beam/pull/13536
>> [2]
>> https://github.com/apache/beam/blob/7eff49fae34e8d3c50716f5da14fa6bcc607fc67/sdks/python/apache_beam/pipeline.py#L524
>>
>> On Tue, Mar 30, 2021 at 12:55 PM Maria-Irina Sandu <[email protected]>
>> wrote:
>>
>>> I'm trying to write to a Kafka topic using WriteTokafka module from
>>> apache_beam.io.kafka.
>>> The error I get is:
>>>
>>>> File "predict.py", line 162, in <module>
>>>> run()
>>>> File "predict.py", line 158, in run
>>>> topic = 'int.fitbit_explore.video_recommendations'))
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>> line 580, in __exit__
>>>> self.result = self.run()
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>> line 530, in run
>>>> self._options).run(False)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>> line 902, in from_runner_api
>>>> p.transforms_stack = [context.transforms.get_by_id(root_transform_id)]
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>> line 116, in get_by_id
>>>> self._id_to_proto[id], self._pipeline_context)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>> line 1252, in from_runner_api
>>>> part = context.transforms.get_by_id(transform_id)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>> line 116, in get_by_id
>>>> self._id_to_proto[id], self._pipeline_context)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>> line 1252, in from_runner_api
>>>> part = context.transforms.get_by_id(transform_id)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>> line 116, in get_by_id
>>>> self._id_to_proto[id], self._pipeline_context)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>> line 1252, in from_runner_api
>>>> part = context.transforms.get_by_id(transform_id)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>> line 116, in get_by_id
>>>> self._id_to_proto[id], self._pipeline_context)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>> line 1252, in from_runner_api
>>>> part = context.transforms.get_by_id(transform_id)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>> line 116, in get_by_id
>>>> self._id_to_proto[id], self._pipeline_context)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>> line 1229, in from_runner_api
>>>> transform = ptransform.PTransform.from_runner_api(proto, context)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/ptransform.py",
>>>> line 733, in from_runner_api
>>>> context)
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/core.py",
>>>> line 1420, in from_runner_api_parameter
>>>> pardo_payload.do_fn, context).serialized_dofn_data())
>>>> File
>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/core.py",
>>>> line 1493, in from_runner_api
>>>> raise ValueError('Unexpected DoFn type: %s' % spec.urn)
>>>> ValueError: Unexpected DoFn type: beam:dofn:javasdk:0.1
>>>
>>>
>>> The pipeline looks like this:
>>>
>>>> pipeline_options = PipelineOptions(argv)
>>>> with beam.Pipeline(options=pipeline_options) as p:
>>>> _ = (p | 'Create' >> beam.Create(['Start'])
>>>> | 'Read MDAU' >>
>>>> beam.io.textio.ReadFromText("gs://fit-recommend-system-testpy/saved_model/dummy_mdau.txt")
>>>> | 'Predict' >> beam.ParDo(PredictDoFn())
>>>> | 'EncodeThrift' >> beam.ParDo(ThriftEncodeDoFn())
>>>> | 'WriteToKafka' >> WriteToKafka(producer_config = {'bootstrap.servers'
>>>> : '<fitbit-bootstrap-server>:9092'},
>>>> topic = '<internal_fitbit_topic>'))
>>>
>>>
>>> I replaced the bootstrap server and topic values with placeholders here
>>> because I'm not sure if I should show them or not.
>>>
>>> The ThriftEncodeDoFn function seems to work. It produces a tuple of
>>> bytes and it looks like this:
>>>
>>> class ThriftEncodeDoFn(beam.DoFn):  def encode(self, element):
>>>     video = VideosAndRatings()
>>>     video.videoId = str(element['videoId'])
>>>     video.rating = 5
>>>     video.index = 1
>>>     videosList = [video]
>>>     recommendations = RecommendationsKafkaMessage()    
>>> recommendations.userId = str(element['userId'])
>>>     recommendations.videos = videosList
>>>     recommendations.category = "DISCOVER_WORKOUTS"    
>>> print(recommendations.userId, recommendations.category)
>>>     trans = TTransport.TMemoryBuffer()
>>>     proto = TBinaryProtocol.TBinaryProtocol(trans)
>>>     recommendations.write(proto)    encoded_data = bytes(trans.getvalue())
>>>     encoded_key = str(element['userId']).encode()    return encoded_key, 
>>> encoded_data
>>>
>>>   def process(self, element) -> Iterable[Tuple[bytes,bytes]]:
>>>     try:
>>>       encoded_key, encoded_data = self.encode(element)
>>>       yield (encoded_key, encoded_data)
>>>     except Exception as e:
>>>       print("encoding didn't work", e)
>>>       yield TaggedOutput('encode_errors', f'element={element}, error={e}')
>>>
>>> The command I use to run the pipeline is this:
>>>
>>> python3 predict.py \
>>>   --work-dir gs://fit-recommend-system-testpy/saved_model \
>>>   --batch \
>>>   --project fit-recommend-system-int \
>>>   --runner DataflowRunner \
>>>   --setup_file ./setup.py \
>>>   --subnetwork https://www.googleapis.com/compute/v1/projects/< 
>>> <https://www.googleapis.com/compute/v1/projects/fit-networking-glob/regions/us-central1/subnetworks/fit-networking-glob>fitbit-internal-subnetwork>
>>>  \
>>>   --job_name prediction \
>>>   --region us-central1 \
>>>   --temp_location gs://fit-recommend-system-testpy/temp \
>>>   --staging_location gs://fit-recommend-system-testpy/staging \
>>>   --no_use_public_ips \
>>>   --sdk_harness_container_image_overrides 
>>> ".*java.*,gcr.io/cloud-dataflow/v1beta3/beam_java8_sdk:2.26.0" \
>>>   --service_account_email 
>>> [email protected]
>>>
>>> And I have installed apache beam with python3 -m pip install 
>>> apache_beam[gcp]==2.26.0.
>>>
>>> Any help with this is much appreciated!
>>>
>>> Best regards,
>>>
>>> Irina
>>>
>>>

Reply via email to