Dataflow multi-language pipelines need Runner v2 so you need to specify the
option "--experiments=use_runner_v2". Please see the example here
<https://github.com/apache/beam/tree/master/sdks/python/apache_beam/examples/kafkataxi>
for an exact command.

On Wed, Mar 31, 2021 at 1:06 PM Maria-Irina Sandu <[email protected]> wrote:

> Thanks all for replying!
> I tried with both 2.27.0 and 2.28.0 and the error was the same. I managed
> to make some progress using the second option proposed by Cham and am now
> getting the following error:
>
>> Traceback (most recent call last):
>> File "predict.py", line 163, in <module>
>> run()
>> File "predict.py", line 159, in run
>> p.run(False).wait_until_finish()
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 559, in run
>> return self.runner.run_pipeline(self, self._options)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/dataflow/dataflow_runner.py",
>> line 638, in run_pipeline
>> self.dataflow_client.create_job(self.job), self)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/utils/retry.py",
>> line 260, in wrapper
>> return fun(*args, **kwargs)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/dataflow/internal/apiclient.py",
>> line 680, in create_job
>> return self.submit_job_description(job)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/utils/retry.py",
>> line 260, in wrapper
>> return fun(*args, **kwargs)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/dataflow/internal/apiclient.py",
>> line 747, in submit_job_description
>> response = self._client.projects_locations_jobs.Create(request)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/dataflow/internal/clients/dataflow/dataflow_v1b3_client.py",
>> line 667, in Create
>> config, request, global_params=global_params)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apitools/base/py/base_api.py",
>> line 731, in _RunMethod
>> return self.ProcessHttpResponse(method_config, http_response, request)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apitools/base/py/base_api.py",
>> line 737, in ProcessHttpResponse
>> self.__ProcessHttpResponse(method_config, http_response, request))
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apitools/base/py/base_api.py",
>> line 604, in __ProcessHttpResponse
>> http_response, method_config=method_config, request=request)
>> apitools.base.py.exceptions.HttpBadRequestError: HttpError accessing <
>> https://dataflow.googleapis.com/v1b3/projects/fit-recommend-system-int/locations/us-central1/jobs?alt=json>:
>> response: <{'vary': 'Origin, X-Origin, Referer', 'content-type':
>> 'application/json; charset=UTF-8', 'date': 'Wed, 31 Mar 2021 19:14:32 GMT',
>> 'server': 'ESF', 'cache-control': 'private', 'x-xss-protection': '0',
>> 'x-frame-options': 'SAMEORIGIN', 'x-content-type-options': 'nosniff',
>> 'alt-svc': 'h3-29=":443"; ma=2592000,h3-T051=":443";
>> ma=2592000,h3-Q050=":443"; ma=2592000,h3-Q046=":443";
>> ma=2592000,h3-Q043=":443"; ma=2592000,quic=":443"; ma=2592000; v="46,43"',
>> 'transfer-encoding': 'chunked', 'status': '400', 'content-length': '288',
>> '-content-encoding': 'gzip'}>, content <{
>> "error": {
>>     "code": 400,
>>     "message": "Dataflow Runner v2 requires a valid FnApi job, Please
>> resubmit your job with a valid configuration. Note that if using Templates,
>> you may need to regenerate your template with the '--use_runner_v2'.",
>>     "status": "INVALID_ARGUMENT"
>>     }
>> }
>
>
>
> On Tue, Mar 30, 2021 at 11:27 PM Chamikara Jayalath <[email protected]>
> wrote:
>
>> I would suggest also including a more recent fix [1] or using
>> the workaround mentioned in [2].
>>
>> Thanks,
>> Cham
>>
>> [1] https://github.com/apache/beam/pull/14306
>> [2]
>> https://issues.apache.org/jira/browse/BEAM-11862?focusedCommentId=17305920&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-17305920
>>
>> On Tue, Mar 30, 2021 at 1:23 PM Brian Hulette <[email protected]>
>> wrote:
>>
>>> +Chamikara Jayalath <[email protected]>
>>>
>>> Could you try with beam 2.27.0 or 2.28.0? I think that this PR [1] may
>>> have addressed the issue. It avoids the problematic code when the pipeline
>>> is multi-language [2].
>>>
>>> [1] https://github.com/apache/beam/pull/13536
>>> [2]
>>> https://github.com/apache/beam/blob/7eff49fae34e8d3c50716f5da14fa6bcc607fc67/sdks/python/apache_beam/pipeline.py#L524
>>>
>>> On Tue, Mar 30, 2021 at 12:55 PM Maria-Irina Sandu <[email protected]>
>>> wrote:
>>>
>>>> I'm trying to write to a Kafka topic using WriteTokafka module from
>>>> apache_beam.io.kafka.
>>>> The error I get is:
>>>>
>>>>> File "predict.py", line 162, in <module>
>>>>> run()
>>>>> File "predict.py", line 158, in run
>>>>> topic = 'int.fitbit_explore.video_recommendations'))
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>>> line 580, in __exit__
>>>>> self.result = self.run()
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>>> line 530, in run
>>>>> self._options).run(False)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>>> line 902, in from_runner_api
>>>>> p.transforms_stack = [context.transforms.get_by_id(root_transform_id)]
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>>> line 116, in get_by_id
>>>>> self._id_to_proto[id], self._pipeline_context)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>>> line 1252, in from_runner_api
>>>>> part = context.transforms.get_by_id(transform_id)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>>> line 116, in get_by_id
>>>>> self._id_to_proto[id], self._pipeline_context)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>>> line 1252, in from_runner_api
>>>>> part = context.transforms.get_by_id(transform_id)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>>> line 116, in get_by_id
>>>>> self._id_to_proto[id], self._pipeline_context)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>>> line 1252, in from_runner_api
>>>>> part = context.transforms.get_by_id(transform_id)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>>> line 116, in get_by_id
>>>>> self._id_to_proto[id], self._pipeline_context)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>>> line 1252, in from_runner_api
>>>>> part = context.transforms.get_by_id(transform_id)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>>>>> line 116, in get_by_id
>>>>> self._id_to_proto[id], self._pipeline_context)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>>>>> line 1229, in from_runner_api
>>>>> transform = ptransform.PTransform.from_runner_api(proto, context)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/ptransform.py",
>>>>> line 733, in from_runner_api
>>>>> context)
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/core.py",
>>>>> line 1420, in from_runner_api_parameter
>>>>> pardo_payload.do_fn, context).serialized_dofn_data())
>>>>> File
>>>>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/core.py",
>>>>> line 1493, in from_runner_api
>>>>> raise ValueError('Unexpected DoFn type: %s' % spec.urn)
>>>>> ValueError: Unexpected DoFn type: beam:dofn:javasdk:0.1
>>>>
>>>>
>>>> The pipeline looks like this:
>>>>
>>>>> pipeline_options = PipelineOptions(argv)
>>>>> with beam.Pipeline(options=pipeline_options) as p:
>>>>> _ = (p | 'Create' >> beam.Create(['Start'])
>>>>> | 'Read MDAU' >>
>>>>> beam.io.textio.ReadFromText("gs://fit-recommend-system-testpy/saved_model/dummy_mdau.txt")
>>>>> | 'Predict' >> beam.ParDo(PredictDoFn())
>>>>> | 'EncodeThrift' >> beam.ParDo(ThriftEncodeDoFn())
>>>>> | 'WriteToKafka' >> WriteToKafka(producer_config
>>>>> = {'bootstrap.servers' : '<fitbit-bootstrap-server>:9092'},
>>>>> topic = '<internal_fitbit_topic>'))
>>>>
>>>>
>>>> I replaced the bootstrap server and topic values with placeholders here
>>>> because I'm not sure if I should show them or not.
>>>>
>>>> The ThriftEncodeDoFn function seems to work. It produces a tuple of
>>>> bytes and it looks like this:
>>>>
>>>> class ThriftEncodeDoFn(beam.DoFn):  def encode(self, element):
>>>>     video = VideosAndRatings()
>>>>     video.videoId = str(element['videoId'])
>>>>     video.rating = 5
>>>>     video.index = 1
>>>>     videosList = [video]
>>>>     recommendations = RecommendationsKafkaMessage()    
>>>> recommendations.userId = str(element['userId'])
>>>>     recommendations.videos = videosList
>>>>     recommendations.category = "DISCOVER_WORKOUTS"    
>>>> print(recommendations.userId, recommendations.category)
>>>>     trans = TTransport.TMemoryBuffer()
>>>>     proto = TBinaryProtocol.TBinaryProtocol(trans)
>>>>     recommendations.write(proto)    encoded_data = bytes(trans.getvalue())
>>>>     encoded_key = str(element['userId']).encode()    return encoded_key, 
>>>> encoded_data
>>>>
>>>>   def process(self, element) -> Iterable[Tuple[bytes,bytes]]:
>>>>     try:
>>>>       encoded_key, encoded_data = self.encode(element)
>>>>       yield (encoded_key, encoded_data)
>>>>     except Exception as e:
>>>>       print("encoding didn't work", e)
>>>>       yield TaggedOutput('encode_errors', f'element={element}, error={e}')
>>>>
>>>> The command I use to run the pipeline is this:
>>>>
>>>> python3 predict.py \
>>>>   --work-dir gs://fit-recommend-system-testpy/saved_model \
>>>>   --batch \
>>>>   --project fit-recommend-system-int \
>>>>   --runner DataflowRunner \
>>>>   --setup_file ./setup.py \
>>>>   --subnetwork https://www.googleapis.com/compute/v1/projects/< 
>>>> <https://www.googleapis.com/compute/v1/projects/fit-networking-glob/regions/us-central1/subnetworks/fit-networking-glob>fitbit-internal-subnetwork>
>>>>  \
>>>>   --job_name prediction \
>>>>   --region us-central1 \
>>>>   --temp_location gs://fit-recommend-system-testpy/temp \
>>>>   --staging_location gs://fit-recommend-system-testpy/staging \
>>>>   --no_use_public_ips \
>>>>   --sdk_harness_container_image_overrides 
>>>> ".*java.*,gcr.io/cloud-dataflow/v1beta3/beam_java8_sdk:2.26.0" \
>>>>   --service_account_email 
>>>> [email protected]
>>>>
>>>> And I have installed apache beam with python3 -m pip install 
>>>> apache_beam[gcp]==2.26.0.
>>>>
>>>> Any help with this is much appreciated!
>>>>
>>>> Best regards,
>>>>
>>>> Irina
>>>>
>>>>

Reply via email to