Hi Aljoscha, I created the issue FLINK-2210 <https://issues.apache.org/jira/browse/FLINK-2210> for aggregate on null. I made changes to ExpressionAggregateFunction to handle ignore null values. But I am unable to create a Table with null values in tests.
The code I used is, def testAggregationWithNull(): Unit = { val env = ExecutionEnvironment.getExecutionEnvironment val table = env.fromElements((123, "a"), (234, "b"), (345, "c"), (null, "d")).toTable val total = table.select('_1.sum).collect().head.productElement(0) assertEquals(total, 702) } and the error i get is, org.apache.flink.api.table.ExpressionException: Invalid expression "('_1).sum": Unsupported type GenericType<java.lang.Object> for aggregation ('_1).sum. Only numeric data types supported. at org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:50) at org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:31) at org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:34) at org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:31) at scala.collection.immutable.List.foreach(List.scala:318) at org.apache.flink.api.table.trees.Analyzer.analyze(Analyzer.scala:31) at org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59) at org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.AbstractTraversable.map(Traversable.scala:105) at org.apache.flink.api.table.Table.select(Table.scala:59) at org.apache.flink.api.scala.table.test.AggregationsITCase.testAggregationWithNull(AggregationsITCase.scala:135) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44) at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26) at org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27) at org.junit.rules.ExternalResource$1.evaluate(ExternalResource.java:48) at org.junit.rules.RunRules.evaluate(RunRules.java:20) at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) at org.junit.runners.ParentRunner.run(ParentRunner.java:309) at org.junit.runners.Suite.runChild(Suite.java:127) at org.junit.runners.Suite.runChild(Suite.java:26) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26) at org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27) at org.junit.runners.ParentRunner.run(ParentRunner.java:309) at org.junit.runner.JUnitCore.run(JUnitCore.java:160) at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78) at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212) at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140) The ExecutionEnvironment.fromCollection method also throws an error when the collection contains a null. Could you please point out what I am doing wrong? How do we create a Table with null values? In our application, we load a file and transform each line into a Row resulting in a DataSet[Row]. This DataSet[Row] is then converted into Table. Should I use the same approach for the test case? Thanks, Shiti On Sun, Jun 14, 2015 at 4:10 PM, Shiti Saxena <ssaxena....@gmail.com> wrote: > I'll do the fix > > On Sun, Jun 14, 2015 at 12:42 AM, Aljoscha Krettek <aljos...@apache.org> > wrote: > >> I merged your PR for the RowSerializer. Teaching the aggregators to deal >> with null values should be a very simple fix in >> ExpressionAggregateFunction.scala. There it is simply always aggregating >> the values without checking whether they are null. If you want you can also >> fix that or I can quickly fix it. >> >> On Thu, 11 Jun 2015 at 10:40 Aljoscha Krettek <aljos...@apache.org> >> wrote: >> >>> Cool, good to hear. >>> >>> The PojoSerializer already handles null fields. The RowSerializer can be >>> modified in pretty much the same way. So you should start by looking at the >>> copy()/serialize()/deserialize() methods of PojoSerializer and then modify >>> RowSerializer in a similar way. >>> >>> You can also send me a private mail if you want more in-depth >>> explanations. >>> >>> On Thu, 11 Jun 2015 at 09:33 Till Rohrmann <trohrm...@apache.org> wrote: >>> >>>> Hi Shiti, >>>> >>>> here is the issue [1]. >>>> >>>> Cheers, >>>> Till >>>> >>>> [1] https://issues.apache.org/jira/browse/FLINK-2203 >>>> >>>> On Thu, Jun 11, 2015 at 8:42 AM Shiti Saxena <ssaxena....@gmail.com> >>>> wrote: >>>> >>>>> Hi Aljoscha, >>>>> >>>>> Could you please point me to the JIRA tickets? If you could provide >>>>> some guidance on how to resolve these, I will work on them and raise a >>>>> pull-request. >>>>> >>>>> Thanks, >>>>> Shiti >>>>> >>>>> On Thu, Jun 11, 2015 at 11:31 AM, Aljoscha Krettek < >>>>> aljos...@apache.org> wrote: >>>>> >>>>>> Hi, >>>>>> yes, I think the problem is that the RowSerializer does not support >>>>>> null-values. I think we can add support for this, I will open a Jira >>>>>> issue. >>>>>> >>>>>> Another problem I then see is that the aggregations can not properly >>>>>> deal with null-values. This would need separate support. >>>>>> >>>>>> Regards, >>>>>> Aljoscha >>>>>> >>>>>> On Thu, 11 Jun 2015 at 06:41 Shiti Saxena <ssaxena....@gmail.com> >>>>>> wrote: >>>>>> >>>>>>> Hi, >>>>>>> >>>>>>> In our project, we are using the Flink Table API and are facing the >>>>>>> following issues, >>>>>>> >>>>>>> We load data from a CSV file and create a DataSet[Row]. The CSV file >>>>>>> can also have invalid entries in some of the fields which we replace >>>>>>> with >>>>>>> null when building the DataSet[Row]. >>>>>>> >>>>>>> This DataSet[Row] is later on transformed to Table whenever required >>>>>>> and specific operation such as select or aggregate, etc are performed. >>>>>>> >>>>>>> When a null value is encountered, we get a null pointer exception >>>>>>> and the whole job fails. (We can see this by calling collect on the >>>>>>> resulting DataSet). >>>>>>> >>>>>>> The error message is similar to, >>>>>>> >>>>>>> Job execution failed. >>>>>>> org.apache.flink.runtime.client.JobExecutionException: Job execution >>>>>>> failed. >>>>>>> at >>>>>>> org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages$1.applyOrElse(JobManager.scala:315) >>>>>>> at >>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33) >>>>>>> at >>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33) >>>>>>> at >>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25) >>>>>>> at >>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:43) >>>>>>> at >>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:29) >>>>>>> at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118) >>>>>>> at >>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.applyOrElse(ActorLogMessages.scala:29) >>>>>>> at akka.actor.Actor$class.aroundReceive(Actor.scala:465) >>>>>>> at >>>>>>> org.apache.flink.runtime.jobmanager.JobManager.aroundReceive(JobManager.scala:94) >>>>>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516) >>>>>>> at akka.actor.ActorCell.invoke(ActorCell.scala:487) >>>>>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:254) >>>>>>> at akka.dispatch.Mailbox.run(Mailbox.scala:221) >>>>>>> at akka.dispatch.Mailbox.exec(Mailbox.scala:231) >>>>>>> at >>>>>>> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >>>>>>> at >>>>>>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >>>>>>> at >>>>>>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >>>>>>> at >>>>>>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >>>>>>> Caused by: java.lang.NullPointerException >>>>>>> at >>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:63) >>>>>>> at >>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:27) >>>>>>> at >>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:80) >>>>>>> at >>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:28) >>>>>>> at >>>>>>> org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:51) >>>>>>> at org.apache.flink.runtime.io >>>>>>> .network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:76) >>>>>>> at org.apache.flink.runtime.io >>>>>>> .network.api.writer.RecordWriter.emit(RecordWriter.java:83) >>>>>>> at >>>>>>> org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65) >>>>>>> at >>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78) >>>>>>> at >>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78) >>>>>>> at >>>>>>> org.apache.flink.runtime.operators.DataSourceTask.invoke(DataSourceTask.java:177) >>>>>>> at org.apache.flink.runtime.taskmanager.Task.run(Task.java:559) >>>>>>> at java.lang.Thread.run(Thread.java:724) >>>>>>> >>>>>>> Could this be because the RowSerializer does not support null >>>>>>> values? (Similar to Flink-629 >>>>>>> <https://issues.apache.org/jira/browse/FLINK-629> ) >>>>>>> >>>>>>> Currently, to overcome this issue, we are ignoring all the rows >>>>>>> which may have null values. For example, we have a method cleanData >>>>>>> defined >>>>>>> as, >>>>>>> >>>>>>> def cleanData(table:Table, relevantColumns:Seq[String]):Table = { >>>>>>> val whereClause: String = relevantColumns.map{ >>>>>>> cName=> >>>>>>> s"$cName.isNotNull" >>>>>>> }.mkString(" && ") >>>>>>> >>>>>>> val result :Table = >>>>>>> table.select(relevantColumns.mkString(",")).where(whereClause) >>>>>>> result >>>>>>> } >>>>>>> >>>>>>> Before operating on any Table, we use this method and then continue >>>>>>> with task. >>>>>>> >>>>>>> Is this the right way to handle this? If not please let me know how >>>>>>> to go about it. >>>>>>> >>>>>>> >>>>>>> Thanks, >>>>>>> Shiti >>>>>>> >>>>>>> >>>>>>> >>>>>>> >>>>> >