Hi Yik San,

From the exception message, it’s clear that it could not find module 
`decrypt_fun` during execution.

You need to specify file `decrypt_fun.py` as a dependency during submitting the 
job, e.g. via -pyfs command line arguments. Otherwise, this file will not be 
available during execution.

Regards,
Dian

> 2021年4月27日 下午8:01,Yik San Chan <[email protected]> 写道:
> 
> Hi,
> 
> Here's the reproducible code sample: 
> https://github.com/YikSanChan/pyflink-quickstart/tree/83526abca832f9ed5b8ce20be52fd506c45044d3
>  
> <https://github.com/YikSanChan/pyflink-quickstart/tree/83526abca832f9ed5b8ce20be52fd506c45044d3>
> 
> I implement my Python UDF by extending the ScalarFunction base class in a 
> separate file named decrypt_fun.py, and try to import the udf into my main 
> python file named udf_use_resource.py.
> 
> However, after I `flink run`, I find the error log in TaskManager log:
> 
> ```
> Caused by: java.lang.RuntimeException: Error received from SDK harness for 
> instruction 1: Traceback (most recent call last):
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>  line 376, in get
>     processor = self.cached_bundle_processors[bundle_descriptor_id].pop()
> IndexError: pop from empty list
> 
> During handling of the above exception, another exception occurred:
> 
> Traceback (most recent call last):
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>  line 253, in _execute
>     response = task()
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>  line 310, in <lambda>
>     lambda: self.create_worker().do_instruction(request), request)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>  line 480, in do_instruction
>     getattr(request, request_type), request.instruction_id)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>  line 509, in process_bundle
>     instruction_id, request.process_bundle_descriptor_id)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>  line 382, in get
>     self.data_channel_factory)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 847, in __init__
>     self.ops = self.create_execution_tree(self.process_bundle_descriptor)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 902, in create_execution_tree
>     descriptor.transforms, key=topological_height, reverse=True)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 901, in <listcomp>
>     (transform_id, get_operation(transform_id)) for transform_id in sorted(
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 791, in wrapper
>     result = cache[args] = func(*args)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 885, in get_operation
>     pcoll_id in descriptor.transforms[transform_id].outputs.items()
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 885, in <dictcomp>
>     pcoll_id in descriptor.transforms[transform_id].outputs.items()
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 883, in <listcomp>
>     tag: [get_operation(op) for op in pcoll_consumers[pcoll_id]]
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 791, in wrapper
>     result = cache[args] = func(*args)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 888, in get_operation
>     transform_id, transform_consumers)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>  line 1174, in create_operation
>     return creator(self, transform_id, transform_proto, payload, consumers)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/beam/beam_operations.py",
>  line 39, in create_scalar_function
>     operations.ScalarFunctionOperation)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/beam/beam_operations.py",
>  line 166, in _create_user_defined_function_operation
>     internal_operation_cls)
>   File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 110, in 
> pyflink.fn_execution.beam.beam_operations_fast.StatelessFunctionOperation.__init__
>   File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 49, in 
> pyflink.fn_execution.beam.beam_operations_fast.FunctionOperation.__init__
>   File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 114, in 
> pyflink.fn_execution.beam.beam_operations_fast.StatelessFunctionOperation.generate_operation
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py",
>  line 91, in __init__
>     super(ScalarFunctionOperation, self).__init__(spec)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py",
>  line 56, in __init__
>     self.func, self.user_defined_funcs = 
> self.generate_func(self.spec.serialized_fn)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py",
>  line 105, in generate_func
>     [operation_utils.extract_user_defined_function(udf) for udf in 
> serialized_fn.udfs])
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py",
>  line 105, in <listcomp>
>     [operation_utils.extract_user_defined_function(udf) for udf in 
> serialized_fn.udfs])
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operation_utils.py",
>  line 86, in extract_user_defined_function
>     user_defined_func = pickle.loads(user_defined_function_proto.payload)
>   File 
> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/pickle.py",
>  line 29, in loads
>     return cloudpickle.loads(payload)
> ModuleNotFoundError: No module named 'decrypt_fun'
> 
>     at 
> org.apache.beam.runners.fnexecution.control.FnApiControlClient$ResponseStreamObserver.onNext(FnApiControlClient.java:177)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.runners.fnexecution.control.FnApiControlClient$ResponseStreamObserver.onNext(FnApiControlClient.java:157)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onMessage(ServerCalls.java:251)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.ForwardingServerCallListener.onMessage(ForwardingServerCallListener.java:33)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.Contexts$ContextualizedServerCallListener.onMessage(Contexts.java:76)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.messagesAvailableInternal(ServerCallImpl.java:309)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.messagesAvailable(ServerCallImpl.java:292)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1MessagesAvailable.runInContext(ServerImpl.java:782)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123)
>  
> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>     at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>  ~[?:1.8.0_282]
>     at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>  ~[?:1.8.0_282]
>     ... 1 more
> ```
> 
> I wonder why? If I move the Decrypt class into udf_use_resource.py, 
> everything works just fine.
> 
> Thank you!
> 
> Best,
> Yik San

Reply via email to