I guess this is the magic of cloud pickle. PyFlink depends on cloud pickle to 
serialize the Python UDF. 

For the latter case, I guess the whole Python UDF implementation will be 
serialized. However, for the previous case, only the path of the class is 
serialized.

Regards,
Dian

> 2021年4月27日 下午8:52,Yik San Chan <evan.chanyik...@gmail.com> 写道:
> 
> Hi Dian,
> 
> Thanks! Adding -pyfs definitely helps.
> 
> However, I am curious. If I define my udf this way:
> 
> ```python
> @udf(input_types=[DataTypes.STRING()], result_type=DataTypes.STRING())
> def decrypt(s):
>     import pandas as pd
>     d = pd.read_csv('resources.zip/resources/crypt.csv', header=None, 
> index_col=0, squeeze=True).to_dict()
>     return d.get(s, "unknown")
> ```
> 
> I can `flink run` without having to specify -pyfs option. The code can also 
> be found in the commit 
> https://github.com/YikSanChan/pyflink-quickstart/commit/cd003ca7d36583999dbb5ffd45958762e4323607
>  
> <https://github.com/YikSanChan/pyflink-quickstart/commit/cd003ca7d36583999dbb5ffd45958762e4323607>.
>  I wonder why?
> 
> Best,
> Yik San
> 
> On Tue, Apr 27, 2021 at 8:13 PM Dian Fu <dian0511...@gmail.com 
> <mailto:dian0511...@gmail.com>> wrote:
> Hi Yik San,
> 
> From the exception message, it’s clear that it could not find module 
> `decrypt_fun` during execution.
> 
> You need to specify file `decrypt_fun.py` as a dependency during submitting 
> the job, e.g. via -pyfs command line arguments. Otherwise, this file will not 
> be available during execution.
> 
> Regards,
> Dian
> 
>> 2021年4月27日 下午8:01,Yik San Chan <evan.chanyik...@gmail.com 
>> <mailto:evan.chanyik...@gmail.com>> 写道:
>> 
>> Hi,
>> 
>> Here's the reproducible code sample: 
>> https://github.com/YikSanChan/pyflink-quickstart/tree/83526abca832f9ed5b8ce20be52fd506c45044d3
>>  
>> <https://github.com/YikSanChan/pyflink-quickstart/tree/83526abca832f9ed5b8ce20be52fd506c45044d3>
>> 
>> I implement my Python UDF by extending the ScalarFunction base class in a 
>> separate file named decrypt_fun.py, and try to import the udf into my main 
>> python file named udf_use_resource.py.
>> 
>> However, after I `flink run`, I find the error log in TaskManager log:
>> 
>> ```
>> Caused by: java.lang.RuntimeException: Error received from SDK harness for 
>> instruction 1: Traceback (most recent call last):
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>>  line 376, in get
>>     processor = self.cached_bundle_processors[bundle_descriptor_id].pop()
>> IndexError: pop from empty list
>> 
>> During handling of the above exception, another exception occurred:
>> 
>> Traceback (most recent call last):
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>>  line 253, in _execute
>>     response = task()
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>>  line 310, in <lambda>
>>     lambda: self.create_worker().do_instruction(request), request)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>>  line 480, in do_instruction
>>     getattr(request, request_type), request.instruction_id)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>>  line 509, in process_bundle
>>     instruction_id, request.process_bundle_descriptor_id)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py",
>>  line 382, in get
>>     self.data_channel_factory)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 847, in __init__
>>     self.ops = self.create_execution_tree(self.process_bundle_descriptor)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 902, in create_execution_tree
>>     descriptor.transforms, key=topological_height, reverse=True)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 901, in <listcomp>
>>     (transform_id, get_operation(transform_id)) for transform_id in sorted(
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 791, in wrapper
>>     result = cache[args] = func(*args)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 885, in get_operation
>>     pcoll_id in descriptor.transforms[transform_id].outputs.items()
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 885, in <dictcomp>
>>     pcoll_id in descriptor.transforms[transform_id].outputs.items()
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 883, in <listcomp>
>>     tag: [get_operation(op) for op in pcoll_consumers[pcoll_id]]
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 791, in wrapper
>>     result = cache[args] = func(*args)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 888, in get_operation
>>     transform_id, transform_consumers)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py",
>>  line 1174, in create_operation
>>     return creator(self, transform_id, transform_proto, payload, consumers)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/beam/beam_operations.py",
>>  line 39, in create_scalar_function
>>     operations.ScalarFunctionOperation)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/beam/beam_operations.py",
>>  line 166, in _create_user_defined_function_operation
>>     internal_operation_cls)
>>   File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 110, in 
>> pyflink.fn_execution.beam.beam_operations_fast.StatelessFunctionOperation.__init__
>>   File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 49, in 
>> pyflink.fn_execution.beam.beam_operations_fast.FunctionOperation.__init__
>>   File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 114, in 
>> pyflink.fn_execution.beam.beam_operations_fast.StatelessFunctionOperation.generate_operation
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py",
>>  line 91, in __init__
>>     super(ScalarFunctionOperation, self).__init__(spec)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py",
>>  line 56, in __init__
>>     self.func, self.user_defined_funcs = 
>> self.generate_func(self.spec.serialized_fn)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py",
>>  line 105, in generate_func
>>     [operation_utils.extract_user_defined_function(udf) for udf in 
>> serialized_fn.udfs])
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py",
>>  line 105, in <listcomp>
>>     [operation_utils.extract_user_defined_function(udf) for udf in 
>> serialized_fn.udfs])
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operation_utils.py",
>>  line 86, in extract_user_defined_function
>>     user_defined_func = pickle.loads(user_defined_function_proto.payload)
>>   File 
>> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/pickle.py",
>>  line 29, in loads
>>     return cloudpickle.loads(payload)
>> ModuleNotFoundError: No module named 'decrypt_fun'
>> 
>>     at 
>> org.apache.beam.runners.fnexecution.control.FnApiControlClient$ResponseStreamObserver.onNext(FnApiControlClient.java:177)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.runners.fnexecution.control.FnApiControlClient$ResponseStreamObserver.onNext(FnApiControlClient.java:157)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onMessage(ServerCalls.java:251)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.ForwardingServerCallListener.onMessage(ForwardingServerCallListener.java:33)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.Contexts$ContextualizedServerCallListener.onMessage(Contexts.java:76)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.messagesAvailableInternal(ServerCallImpl.java:309)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.messagesAvailable(ServerCallImpl.java:292)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1MessagesAvailable.runInContext(ServerImpl.java:782)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123)
>>  
>> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0]
>>     at 
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>>  ~[?:1.8.0_282]
>>     at 
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>>  ~[?:1.8.0_282]
>>     ... 1 more
>> ```
>> 
>> I wonder why? If I move the Decrypt class into udf_use_resource.py, 
>> everything works just fine.
>> 
>> Thank you!
>> 
>> Best,
>> Yik San
> 

Reply via email to