I guess this is the magic of cloud pickle. PyFlink depends on cloud pickle to serialize the Python UDF.
For the latter case, I guess the whole Python UDF implementation will be serialized. However, for the previous case, only the path of the class is serialized. Regards, Dian > 2021年4月27日 下午8:52,Yik San Chan <evan.chanyik...@gmail.com> 写道: > > Hi Dian, > > Thanks! Adding -pyfs definitely helps. > > However, I am curious. If I define my udf this way: > > ```python > @udf(input_types=[DataTypes.STRING()], result_type=DataTypes.STRING()) > def decrypt(s): > import pandas as pd > d = pd.read_csv('resources.zip/resources/crypt.csv', header=None, > index_col=0, squeeze=True).to_dict() > return d.get(s, "unknown") > ``` > > I can `flink run` without having to specify -pyfs option. The code can also > be found in the commit > https://github.com/YikSanChan/pyflink-quickstart/commit/cd003ca7d36583999dbb5ffd45958762e4323607 > > <https://github.com/YikSanChan/pyflink-quickstart/commit/cd003ca7d36583999dbb5ffd45958762e4323607>. > I wonder why? > > Best, > Yik San > > On Tue, Apr 27, 2021 at 8:13 PM Dian Fu <dian0511...@gmail.com > <mailto:dian0511...@gmail.com>> wrote: > Hi Yik San, > > From the exception message, it’s clear that it could not find module > `decrypt_fun` during execution. > > You need to specify file `decrypt_fun.py` as a dependency during submitting > the job, e.g. via -pyfs command line arguments. Otherwise, this file will not > be available during execution. > > Regards, > Dian > >> 2021年4月27日 下午8:01,Yik San Chan <evan.chanyik...@gmail.com >> <mailto:evan.chanyik...@gmail.com>> 写道: >> >> Hi, >> >> Here's the reproducible code sample: >> https://github.com/YikSanChan/pyflink-quickstart/tree/83526abca832f9ed5b8ce20be52fd506c45044d3 >> >> <https://github.com/YikSanChan/pyflink-quickstart/tree/83526abca832f9ed5b8ce20be52fd506c45044d3> >> >> I implement my Python UDF by extending the ScalarFunction base class in a >> separate file named decrypt_fun.py, and try to import the udf into my main >> python file named udf_use_resource.py. >> >> However, after I `flink run`, I find the error log in TaskManager log: >> >> ``` >> Caused by: java.lang.RuntimeException: Error received from SDK harness for >> instruction 1: Traceback (most recent call last): >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py", >> line 376, in get >> processor = self.cached_bundle_processors[bundle_descriptor_id].pop() >> IndexError: pop from empty list >> >> During handling of the above exception, another exception occurred: >> >> Traceback (most recent call last): >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py", >> line 253, in _execute >> response = task() >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py", >> line 310, in <lambda> >> lambda: self.create_worker().do_instruction(request), request) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py", >> line 480, in do_instruction >> getattr(request, request_type), request.instruction_id) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py", >> line 509, in process_bundle >> instruction_id, request.process_bundle_descriptor_id) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/sdk_worker.py", >> line 382, in get >> self.data_channel_factory) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 847, in __init__ >> self.ops = self.create_execution_tree(self.process_bundle_descriptor) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 902, in create_execution_tree >> descriptor.transforms, key=topological_height, reverse=True) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 901, in <listcomp> >> (transform_id, get_operation(transform_id)) for transform_id in sorted( >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 791, in wrapper >> result = cache[args] = func(*args) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 885, in get_operation >> pcoll_id in descriptor.transforms[transform_id].outputs.items() >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 885, in <dictcomp> >> pcoll_id in descriptor.transforms[transform_id].outputs.items() >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 883, in <listcomp> >> tag: [get_operation(op) for op in pcoll_consumers[pcoll_id]] >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 791, in wrapper >> result = cache[args] = func(*args) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 888, in get_operation >> transform_id, transform_consumers) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/apache_beam/runners/worker/bundle_processor.py", >> line 1174, in create_operation >> return creator(self, transform_id, transform_proto, payload, consumers) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/beam/beam_operations.py", >> line 39, in create_scalar_function >> operations.ScalarFunctionOperation) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/beam/beam_operations.py", >> line 166, in _create_user_defined_function_operation >> internal_operation_cls) >> File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 110, in >> pyflink.fn_execution.beam.beam_operations_fast.StatelessFunctionOperation.__init__ >> File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 49, in >> pyflink.fn_execution.beam.beam_operations_fast.FunctionOperation.__init__ >> File "pyflink/fn_execution/beam/beam_operations_fast.pyx", line 114, in >> pyflink.fn_execution.beam.beam_operations_fast.StatelessFunctionOperation.generate_operation >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py", >> line 91, in __init__ >> super(ScalarFunctionOperation, self).__init__(spec) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py", >> line 56, in __init__ >> self.func, self.user_defined_funcs = >> self.generate_func(self.spec.serialized_fn) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py", >> line 105, in generate_func >> [operation_utils.extract_user_defined_function(udf) for udf in >> serialized_fn.udfs]) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operations.py", >> line 105, in <listcomp> >> [operation_utils.extract_user_defined_function(udf) for udf in >> serialized_fn.udfs]) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/operation_utils.py", >> line 86, in extract_user_defined_function >> user_defined_func = pickle.loads(user_defined_function_proto.payload) >> File >> "/usr/local/anaconda3/envs/featflow-ml-env/lib/python3.7/site-packages/pyflink/fn_execution/pickle.py", >> line 29, in loads >> return cloudpickle.loads(payload) >> ModuleNotFoundError: No module named 'decrypt_fun' >> >> at >> org.apache.beam.runners.fnexecution.control.FnApiControlClient$ResponseStreamObserver.onNext(FnApiControlClient.java:177) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.runners.fnexecution.control.FnApiControlClient$ResponseStreamObserver.onNext(FnApiControlClient.java:157) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onMessage(ServerCalls.java:251) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.ForwardingServerCallListener.onMessage(ForwardingServerCallListener.java:33) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.Contexts$ContextualizedServerCallListener.onMessage(Contexts.java:76) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.messagesAvailableInternal(ServerCallImpl.java:309) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.messagesAvailable(ServerCallImpl.java:292) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1MessagesAvailable.runInContext(ServerImpl.java:782) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> org.apache.beam.vendor.grpc.v1p26p0.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) >> >> ~[blob_p-c18fee26bdebc8cb6523e7161974631be9f3b3d0-8f27cc9e92a718bc9d3d138d1d2d49ca:1.12.0] >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) >> ~[?:1.8.0_282] >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) >> ~[?:1.8.0_282] >> ... 1 more >> ``` >> >> I wonder why? If I move the Decrypt class into udf_use_resource.py, >> everything works just fine. >> >> Thank you! >> >> Best, >> Yik San >