Well that is debatable.

 

The following table sales is partitioned in Oracle but has local bitmap indexes 
that help the query.

 

select * from sales where prod_id = 10;

 

no rows selected

 

 

Execution Plan

----------------------------------------------------------

Plan hash value: 511273406

 

---------------------------------------------------------------------------------------------------------------------

| Id  | Operation                          | Name           | Rows  | Bytes | 
Cost (%CPU)| Time     | Pstart| Pstop |

---------------------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT                   |                |   347 | 10063 |   
 93   (0)| 00:00:02 |       |       |

|   1 |  PARTITION RANGE ALL               |                |   347 | 10063 |   
 93   (0)| 00:00:02 |     1 |    28 |

|   2 |   TABLE ACCESS BY LOCAL INDEX ROWID| SALES          |   347 | 10063 |   
 93   (0)| 00:00:02 |     1 |    28 |

|   3 |    BITMAP CONVERSION TO ROWIDS     |                |       |       |   
         |          |       |       |

|*  4 |     BITMAP INDEX SINGLE VALUE      | SALES_PROD_BIX |       |       |   
         |          |     1 |    28 |

---------------------------------------------------------------------------------------------------------------------

 

Obviously at this stage we do not have local indexes in Hive. That could make 
it moredefficient for search and IMO will be a great tool.

 

Cheers,

 

 

Dr Mich Talebzadeh

 

LinkedIn   
<https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>
 
https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw

 

Sybase ASE 15 Gold Medal Award 2008

A Winning Strategy: Running the most Critical Financial Data on ASE 15

 
<http://login.sybase.com/files/Product_Overviews/ASE-Winning-Strategy-091908.pdf>
 http://login.sybase.com/files/Product_Overviews/ASE-Winning-Strategy-091908.pdf

Author of the books "A Practitioner’s Guide to Upgrading to Sybase ASE 15", 
ISBN 978-0-9563693-0-7. 

co-author "Sybase Transact SQL Guidelines Best Practices", ISBN 
978-0-9759693-0-4

Publications due shortly:

Complex Event Processing in Heterogeneous Environments, ISBN: 978-0-9563693-3-8

Oracle and Sybase, Concepts and Contrasts, ISBN: 978-0-9563693-1-4, volume one 
out shortly

 

 <http://talebzadehmich.wordpress.com/> http://talebzadehmich.wordpress.com

 

NOTE: The information in this email is proprietary and confidential. This 
message is for the designated recipient only, if you are not the intended 
recipient, you should destroy it immediately. Any information in this message 
shall not be understood as given or endorsed by Peridale Technology Ltd, its 
subsidiaries or their employees, unless expressly so stated. It is the 
responsibility of the recipient to ensure that this email is virus free, 
therefore neither Peridale Ltd, its subsidiaries nor their employees accept any 
responsibility.

 

From: Jörn Franke [mailto:jornfra...@gmail.com] 
Sent: 08 January 2016 06:20
To: user@hive.apache.org
Subject: Re: Impact of partitioning on certain queries

 

This observation is correct and it is the same  behavior as you see it in other 
databases supporting partitions. Usually you should avoid many small partitions.


On 07 Jan 2016, at 23:53, Mich Talebzadeh <m...@peridale.co.uk 
<mailto:m...@peridale.co.uk> > wrote:

Ok we hope that partitioning improves performance where the predicate is on 
partitioned columns

 

I have two tables. One a basic table called smallsales defined as below

 

CREATE TABLE `smallsales`(                                              |

|   `prod_id` bigint,                                                     |

|   `cust_id` bigint,                                                     |

|   `time_id` timestamp,                                                  |

|   `channel_id` bigint,                                                  |

|   `promo_id` bigint,                                                    |

|   `quantity_sold` decimal(10,0),                                        |

|   `amount_sold` decimal(10,0))                                          |

| ROW FORMAT SERDE                                                        |

|   'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'                  |

| STORED AS INPUTFORMAT                                                   |

|   'org.apache.hadoop.mapred.TextInputFormat'                            |

| OUTPUTFORMAT                                                            |

|   'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'          |

| LOCATION                                                                |

|   'hdfs://rhes564:9000/user/hive/warehouse/oraclehadoop.db/smallsales'  |

| TBLPROPERTIES (                                                         |

|   'COLUMN_STATS_ACCURATE'='true',                                       |

|   'last_modified_by'='hduser',                                          |

|   'last_modified_time'='1451644705',                                    |

|   'numFiles'='1',                                                       |

|   'numRows'='5000000',                                                  |

|   'rawDataSize'='193437457',                                            |

|   'totalSize'='198437457',                                              |

|   'transient_lastDdlTime'='1451784743')                                 |

+-------------------------------------------------------------------------+--+

 

 

So 5 million rows.

 

 

I then created a partitioned table called sales as below

 

|                                createtab_stmt                                 
|

+-------------------------------------------------------------------------------+--+

| CREATE TABLE `sales`(                                                         
|

|   `prod_id` bigint,                                                           
|

|   `cust_id` bigint,                                                           
|

|   `time_id` timestamp,                                                        
|

|   `channel_id` bigint,                                                        
|

|   `promo_id` bigint,                                                          
|

|   `quantity_sold` decimal(10,0),                                              
|

|   `amount_sold` decimal(10,0))                                                
|

| PARTITIONED BY (                                                              
|

|   `year` int,                                                                 
|

|   `month` int)                                                                
|

| CLUSTERED BY (                                                                
|

|   prod_id,                                                                    
|

|   cust_id,                                                                    
|

|   time_id,                                                                    
|

|   channel_id,                                                                 
|

|   promo_id)                                                                   
|

| INTO 256 BUCKETS                                                              
|

| ROW FORMAT SERDE                                                              
|

|   'org.apache.hadoop.hive.ql.io.orc.OrcSerde'                                 
|

| STORED AS INPUTFORMAT                                                         
|

|   'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'                           
|

| OUTPUTFORMAT                                                                  
|

|   'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'                          
|

| LOCATION                                                                      
|

|   'hdfs://rhes564:9000/user/hive/warehouse/oraclehadoop.db/sales'             
|

| TBLPROPERTIES (                                                               
|

|   'orc.bloom.filter.columns'='PROD_ID,CUST_ID,TIME_ID,CHANNEL_ID,PROMO_ID',   
|

|   'orc.bloom.filter.fpp'='0.05',                                              
|

|   'orc.compress'='SNAPPY',                                                    
|

|   'orc.create.index'='true',                                                  
|

|   'orc.row.index.stride'='10000',                                             
|

|   'orc.stripe.size'='268435456',                                              
|

|   'transient_lastDdlTime'='1451814921')                                       
|

+-------------------------------------------------------------------------------+--+

 

And loaded data from smallsales to sales table

 

Stats updated in both

 

Now when I do the following

 

0: jdbc:hive2://rhes564:10010/default> select * from smallsales where prod_id = 
10;

+---------------------+---------------------+---------------------+------------------------+----------------------+---------------------------+-------------------------+--+

| smallsales.prod_id  | smallsales.cust_id  | smallsales.time_id  | 
smallsales.channel_id  | smallsales.promo_id  | smallsales.quantity_sold  | 
smallsales.amount_sold  |

+---------------------+---------------------+---------------------+------------------------+----------------------+---------------------------+-------------------------+--+

+---------------------+---------------------+---------------------+------------------------+----------------------+---------------------------+-------------------------+--+

No rows selected (2.231 seconds)

 

Ok if I do the same query from partitioned bucketed table in takes 

 

0: jdbc:hive2://rhes564:10010/default> select * from sales where prod_id = 10;

+----------------+----------------+----------------+-------------------+-----------------+----------------------+--------------------+-------------+--------------+--+

| sales.prod_id  | sales.cust_id  | sales.time_id  | sales.channel_id  | 
sales.promo_id  | sales.quantity_sold  | sales.amount_sold  | sales.year  | 
sales.month  |

+----------------+----------------+----------------+-------------------+-----------------+----------------------+--------------------+-------------+--------------+--+

+----------------+----------------+----------------+-------------------+-----------------+----------------------+--------------------+-------------+--------------+--+

No rows selected (26.96 seconds)

 

 

Note that the second query is order of magnitude slower. 

 

My view is that the query in partitioned table has got to go through every 
partitioned file to check the existence of the value, whereas in a 
non-partitioned table the operation is much faster.  Adding more partition and 
buckets also adds more load on NameNode as well.

 

Are there other reasons?

 

Thanks

 

 

 

Dr Mich Talebzadeh

 

LinkedIn   
<https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>
 
https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw

 

Sybase ASE 15 Gold Medal Award 2008

A Winning Strategy: Running the most Critical Financial Data on ASE 15

 
<http://login.sybase.com/files/Product_Overviews/ASE-Winning-Strategy-091908.pdf>
 http://login.sybase.com/files/Product_Overviews/ASE-Winning-Strategy-091908.pdf

Author of the books "A Practitioner’s Guide to Upgrading to Sybase ASE 15", 
ISBN 978-0-9563693-0-7. 

co-author "Sybase Transact SQL Guidelines Best Practices", ISBN 
978-0-9759693-0-4

Publications due shortly:

Complex Event Processing in Heterogeneous Environments, ISBN: 978-0-9563693-3-8

Oracle and Sybase, Concepts and Contrasts, ISBN: 978-0-9563693-1-4, volume one 
out shortly

 

 <http://talebzadehmich.wordpress.com/> http://talebzadehmich.wordpress.com

 

NOTE: The information in this email is proprietary and confidential. This 
message is for the designated recipient only, if you are not the intended 
recipient, you should destroy it immediately. Any information in this message 
shall not be understood as given or endorsed by Peridale Technology Ltd, its 
subsidiaries or their employees, unless expressly so stated. It is the 
responsibility of the recipient to ensure that this email is virus free, 
therefore neither Peridale Ltd, its subsidiaries nor their employees accept any 
responsibility.

 

Reply via email to