Probably you should ALWAYS keep the RDD storage policy to MEMORY AND DISK – it 
will be your insurance policy against sys crashes due to memory leaks. Until 
there is free RAM, spark streaming (spark) will NOT resort to disk – and of 
course resorting to disk from time to time (ie when there is no free RAM ) and 
taking a performance hit from that, BUT only until there is no free RAM 

 

From: Dmitry Goldenberg [mailto:dgoldenberg...@gmail.com] 
Sent: Thursday, May 28, 2015 2:34 PM
To: Evo Eftimov
Cc: Gerard Maas; spark users
Subject: Re: FW: Re: Autoscaling Spark cluster based on topic sizes/rate of 
growth in Kafka or Spark's metrics?

 

Evo, good points.

 

On the dynamic resource allocation, I'm surmising this only works within a 
particular cluster setup.  So it improves the usage of current cluster 
resources but it doesn't make the cluster itself elastic. At least, that's my 
understanding.

 

Memory + disk would be good and hopefully it'd take *huge* load on the system 
to start exhausting the disk space too.  I'd guess that falling onto disk will 
make things significantly slower due to the extra I/O.

 

Perhaps we'll really want all of these elements eventually.  I think we'd want 
to start with memory only, keeping maxRate low enough not to overwhelm the 
consumers; implement the cluster autoscaling.  We might experiment with dynamic 
resource allocation before we get to implement the cluster autoscale.

 

 

 

On Thu, May 28, 2015 at 9:05 AM, Evo Eftimov <evo.efti...@isecc.com> wrote:

You can also try Dynamic Resource Allocation

 

https://spark.apache.org/docs/1.3.1/job-scheduling.html#dynamic-resource-allocation
 

 

Also re the Feedback Loop for automatic message consumption rate adjustment – 
there is a “dumb” solution option – simply set the storage policy for the 
DStream RDDs to MEMORY AND DISK – when the memory gets exhausted spark 
streaming will resort to keeping new RDDs on disk which will prevent it from 
crashing and hence loosing them. Then some memory will get freed and it will 
resort back to RAM and so on and so forth  

 

 

Sent from Samsung Mobile

-------- Original message --------

From: Evo Eftimov 

Date:2015/05/28 13:22 (GMT+00:00) 

To: Dmitry Goldenberg 

Cc: Gerard Maas ,spark users 

Subject: Re: Autoscaling Spark cluster based on topic sizes/rate of growth in 
Kafka or Spark's metrics? 

 

You can always spin new boxes in the background and bring them into the cluster 
fold when fully operational and time that with job relaunch and param change

 

Kafka offsets are mabaged automatically for you by the kafka clients which keep 
them in zoomeeper dont worry about that ad long as you shut down your job 
gracefuly. Besides msnaging the offsets explicitly is not a big deal if 
necessary

 

 

Sent from Samsung Mobile

 

-------- Original message --------

From: Dmitry Goldenberg 

Date:2015/05/28 13:16 (GMT+00:00) 

To: Evo Eftimov 

Cc: Gerard Maas ,spark users 

Subject: Re: Autoscaling Spark cluster based on topic sizes/rate of growth in 
Kafka or Spark's metrics? 

 

Thanks, Evo.  Per the last part of your comment, it sounds like we will need to 
implement a job manager which will be in control of starting the jobs, 
monitoring the status of the Kafka topic(s), shutting jobs down and marking 
them as ones to relaunch, scaling the cluster up/down by adding/removing 
machines, and relaunching the 'suspended' (shut down) jobs.

 

I suspect that relaunching the jobs may be tricky since that means keeping 
track of the starter offsets in Kafka topic(s) from which the jobs started 
working on.

 

Ideally, we'd want to avoid a re-launch.  The 'suspension' and relaunching of 
jobs, coupled with the wait for the new machines to come online may turn out 
quite time-consuming which will make for lengthy request times, and our 
requests are not asynchronous.  Ideally, the currently running jobs would 
continue to run on the machines currently available in the cluster.

 

In the scale-down case, the job manager would want to signal to Spark's job 
scheduler not to send work to the node being taken out, find out when the last 
job has finished running on the node, then take the node out.

 

This is somewhat like changing the number of cylinders in a car engine while 
the car is running...

 

Sounds like a great candidate for a set of enhancements in Spark...

 

On Thu, May 28, 2015 at 7:52 AM, Evo Eftimov <evo.efti...@isecc.com> wrote:

@DG; The key metrics should be

 

-          Scheduling delay – its ideal state is to remain constant over time 
and ideally be less than the time of the microbatch window 

-          The average job processing time should remain less than the 
micro-batch window

-          Number of Lost Jobs – even if there is a single Job lost that means 
that you have lost all messages for the DStream RDD processed by that job due 
to the previously described spark streaming memory leak condition and 
subsequent crash – described in previous postings submitted by me

 

You can even go one step further and periodically issue “get/check free memory” 
to see whether it is decreasing relentlessly at a constant rate – if it touches 
a predetermined RAM threshold that should be your third metric 

 

Re the “back pressure” mechanism – this is a Feedback Loop mechanism and you 
can implement one on your own without waiting for Jiras and new features 
whenever they might be implemented by the Spark dev team – moreover you can 
avoid using slow mechanisms such as ZooKeeper and even incorporate some Machine 
Learning in your Feedback Loop to make it handle the message consumption rate 
more intelligently and benefit from ongoing online learning – BUT this is STILL 
about voluntarily sacrificing your performance in the name of keeping your 
system stable – it is not about scaling your system/solution 

 

In terms of how to scale the Spark Framework Dynamically – even though this is 
not supported at the moment out of the box I guess you can have a sys 
management framework spin dynamically a few more boxes (spark worker nodes), 
stop dynamically your currently running Spark Streaming Job, relaunch it with 
new params e.g. more Receivers, larger number of Partitions (hence tasks), more 
RAM per executor etc. Obviously this will cause some temporary delay in fact 
interruption in your processing but if the business use case can tolerate that 
then go for it 

 

From: Gerard Maas [mailto:gerard.m...@gmail.com] 
Sent: Thursday, May 28, 2015 12:36 PM
To: dgoldenberg
Cc: spark users
Subject: Re: Autoscaling Spark cluster based on topic sizes/rate of growth in 
Kafka or Spark's metrics?

 

Hi,

 

tl;dr At the moment (with a BIG disclaimer *) elastic scaling of spark 
streaming processes is not supported. 

 

 

Longer version.

 

I assume that you are talking about Spark Streaming as the discussion is about 
handing Kafka streaming data.

 

Then you have two things to consider: the Streaming receivers and the Spark 
processing cluster.

 

Currently, the receiving topology is static. One receiver is allocated with 
each DStream instantiated and it will use 1 core in the cluster. Once the 
StreamingContext is started, this topology cannot be changed, therefore the 
number of Kafka receivers is fixed for the lifetime of your DStream. 

What we do is to calculate the cluster capacity and use that as a fixed upper 
bound (with a margin) for the receiver throughput.

 

There's work in progress to add a reactive model to the receiver, where 
backpressure can be applied to handle overload conditions. See 
https://issues.apache.org/jira/browse/SPARK-7398

 

Once the data is received, it will be processed in a 'classical' Spark 
pipeline, so previous posts on spark resource scheduling might apply.

 

Regarding metrics, the standard metrics subsystem of spark will report 
streaming job performance. Check the driver's metrics endpoint to peruse the 
available metrics:

 

<driver>:<ui-port>/metrics/json

 

-kr, Gerard.

 

 

(*) Spark is a project that moves so fast that statements might be invalidated 
by new work every minute.

 

On Thu, May 28, 2015 at 1:21 AM, dgoldenberg <dgoldenberg...@gmail.com> wrote:

Hi,

I'm trying to understand if there are design patterns for autoscaling Spark
(add/remove slave machines to the cluster) based on the throughput.

Assuming we can throttle Spark consumers, the respective Kafka topics we
stream data from would start growing.  What are some of the ways to generate
the metrics on the number of new messages and the rate they are piling up?
This perhaps is more of a Kafka question; I see a pretty sparse javadoc with
the Metric interface and not much else...

What are some of the ways to expand/contract the Spark cluster? Someone has
mentioned Mesos...

I see some info on Spark metrics in  the Spark monitoring guide
<https://spark.apache.org/docs/latest/monitoring.html>  .  Do we want to
perhaps implement a custom sink that would help us autoscale up or down
based on the throughput?



--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/Autoscaling-Spark-cluster-based-on-topic-sizes-rate-of-growth-in-Kafka-or-Spark-s-metrics-tp23062.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

 

 

 

Reply via email to