I am unable to see the visualization with Zeppelin from blog : http://hortonworks.com/blog/introduction-to-data-science-with-apache-spark/
Notebook %spark val sqlContext = new org.apache.spark.sql.SQLContext(sc) import sqlContext.implicits._ import java.sql.Date import org.apache.spark.sql.Row case class Log(level: String, date: Date, fileName: String) import java.text.SimpleDateFormat val df = new SimpleDateFormat("yyyy-mm-dd HH:mm:ss,SSS") val ambari = ambariLogs.map { line => val s = line.split(" ") val logLevel = s(0) val dateTime = df.parse(s(1) + " " + s(2)) val fileName = s(3).split(":")(0) Log(logLevel,new Date(dateTime.getTime()), fileName)}.toDF() ambari.registerTempTable("ambari") //ambari.groupBy("level").count() sqlContext.sql("SELECT COUNT(*) from ambari") Output: sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@5ca68ee6 import sqlContext.implicits._ import java.sql.Date import org.apache.spark.sql.Row defined class Log import java.text.SimpleDateFormat df: java.text.SimpleDateFormat = java.text.SimpleDateFormat@98f267e7 ambari: org.apache.spark.sql.DataFrame = [level: string, date: date, fileName: string] res74: org.apache.spark.sql.DataFrame = [c0: bigint] Hence the table ambari is created successfully. In a new note, i wrote this %spark import org.apache.spark.sql.Row val result = sqlContext.sql("SELECT level, COUNT(1) from ambari group by level").map { case Row(level: String, count: Long) => { level + "\t" + count } }.collect() println("%table Log Level\tCount\n" + result.mkString("\n")) Output: import org.apache.spark.sql.Row result: Array[String] = Array(INFO 2444, WARNING 3) %table Log Level Count INFO 2444 WARNING 3 I did not get graph rendering despite am outputing %table from println. Any suggestions ? On Mon, Aug 3, 2015 at 1:47 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote: > Fixed it > > mvn clean package -Pspark-1.3 -Dspark.version=1.3.1 > -Dhadoop.version=2.7.0 -Phadoop-2.6 -Pyarn -DskipTests > > Earlier i had > > mvn clean install -DskipTests -Pspark-1.3 -Dspark.version=1.3.1 > -Phadoop-2.7 -Pyarn > > On Mon, Aug 3, 2015 at 1:31 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote: > >> I have hadoop cluster up using Ambari. It also allowed me to install >> Spark 1.3.1 and i can run sample spark application & Yarn application. So >> cluster is up and running fine. >> >> I got Zeppelin setup on a new box and was able to launch UI. >> >> I modified spark interpreter to set >> >> masteryarn-clientspark.app.nameZeppelinspark.cores.max >> spark.driver.extraJavaOptions-Dhdp.version=2.3.1.0-2574 >> spark.executor.memory512mspark.home/usr/hdp/2.3.1.0-2574/spark >> spark.yarn.am.extraJavaOptions-Dhdp.version=2.3.1.0-2574spark.yarn.jar >> /home/zeppelin/incubator-zeppelin/interpreter/spark/zeppelin-spark-0.6.0-incubating-SNAPSHOT.jar >> zeppelin.dep.localrepolocal-repo >> >> When i run a spark notebook >> %spark >> val ambariLogs = >> sc.textFile("file:///var/log/ambari-agent/ambari-agent.log") >> ambariLogs.take(10).mkString("\n") >> >> (The location exists) >> >> I see two exceptions in Zeppelin spark interpreter logs >> >> ERROR [2015-08-03 13:30:50,262] ({pool-1-thread-2} >> ProcessFunction.java[process]:41) - Internal error processing getProgress >> >> java.lang.NoClassDefFoundError: Could not initialize class >> org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$ >> >> at >> org.apache.spark.deploy.yarn.ClientArguments.<init>(ClientArguments.scala:38) >> >> at >> org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:55) >> >> at >> org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:141) >> >> at org.apache.spark.SparkContext.<init>(SparkContext.scala:381) >> >> at >> org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:301) >> >> at >> org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:146) >> >> at >> org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:423) >> >> at >> org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:74) >> >> at >> org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68) >> >> at >> org.apache.zeppelin.interpreter.LazyOpenInterpreter.getProgress(LazyOpenInterpreter.java:109) >> >> at >> org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer.getProgress(RemoteInterpreterServer.java:298) >> >> at >> org.apache.zeppelin.interpreter.thrift.RemoteInterpreterService$Processor$getProgress.getResult(RemoteInterpreterService.java:1068) >> >> at >> org.apache.zeppelin.interpreter.thrift.RemoteInterpreterService$Processor$getProgress.getResult(RemoteInterpreterService.java:1053) >> >> at org.apache.thrift.ProcessFunction.process(ProcessFunction.java:39) >> >> at org.apache.thrift.TBaseProcessor.process(TBaseProcessor.java:39) >> >> at >> org.apache.thrift.server.TThreadPoolServer$WorkerProcess.run(TThreadPoolServer.java:206) >> >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) >> >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) >> >> at java.lang.Thread.run(Thread.java:745) >> >> >> AND >> >> >> WARN [2015-08-03 13:30:50,085] ({pool-1-thread-2} >> Logging.scala[logWarning]:71) - Service 'SparkUI' could not bind on port >> 4041. Attempting port 4042. >> >> INFO [2015-08-03 13:30:50,112] ({pool-1-thread-2} >> Server.java[doStart]:272) - jetty-8.y.z-SNAPSHOT >> >> WARN [2015-08-03 13:30:50,123] ({pool-1-thread-2} >> AbstractLifeCycle.java[setFailed]:204) - FAILED >> SelectChannelConnector@0.0.0.0:4042: java.net.BindException: Address >> already in use >> >> java.net.BindException: Address already in use >> >> at sun.nio.ch.Net.bind0(Native Method) >> >> at sun.nio.ch.Net.bind(Net.java:444) >> >> at sun.nio.ch.Net.bind(Net.java:436) >> >> at >> sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:214) >> >> >> Any suggestions ? >> >> >> On Mon, Aug 3, 2015 at 11:00 AM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> >> wrote: >> >>> Thanks a lot for all these documents. Appreciate your effort & time. >>> >>> On Mon, Aug 3, 2015 at 10:15 AM, Christian Tzolov <ctzo...@pivotal.io> >>> wrote: >>> >>>> ÐΞ€ρ@Ҝ (๏̯͡๏), >>>> >>>> I've successfully run Zeppelin with Spark on YARN. I'm using Ambari and >>>> PivotalHD30. PHD30 is ODP compliant so you should be able to repeat the >>>> configuration for HDP (e.g. hortonworks). >>>> >>>> 1. Before you start with Zeppelin, make sure that your Spark/YARN env. >>>> works from the command line (e.g run Pi test). If it doesn't work make sure >>>> that the hdp.version is set correctly or you can hardcode the >>>> stack.name and stack.version properties as Ambari Custom yarn-site >>>> properties (that is what i did). >>>> >>>> 2. Your Zeppelin should be build with proper Spark and Hadoop versions >>>> and YARN support enabled. In my case used this build command: >>>> >>>> mvn clean package -Pspark-1.4 -Dspark.version=1.4.1 >>>> -Dhadoop.version=2.6.0 -Phadoop-2.6 -Pyarn -DskipTests -Pbuild-distr >>>> >>>> 3. Open the Spark interpreter configuration and set 'master' property >>>> to 'yarn-client' ( e.g. master=yarn-client). then press Save. >>>> >>>> 4. In (conf/zeppelin-env.sh) set HADOOP_CONF_DIR for PHD and HDP it >>>> will look like this: >>>> export HADOOP_CONF_DIR=/etc/hadoop/conf >>>> >>>> 5. (optional) i've restarted the zeppelin daemon but i don't think this >>>> is required. >>>> >>>> 6. Make sure that HDFS has /user/<zeppelin user> folder exists and has >>>> HDFS write permissions. Otherwise you can create it like this: >>>> sudo -u hdfs hdfs dfs -mkdir /user/<zeppelin user> >>>> sudo -u hdfs hdfs dfs -chown -R <zeppelin user>t:hdfs /user/<zeppelin >>>> user> >>>> >>>> Good to go! >>>> >>>> Cheers, >>>> Christian >>>> >>>> On 3 August 2015 at 17:50, Vadla, Karthik <karthik.va...@intel.com> >>>> wrote: >>>> >>>>> Hi Deepak, >>>>> >>>>> >>>>> >>>>> I have documented everything here. >>>>> >>>>> Please check published document. >>>>> >>>>> >>>>> https://software.intel.com/sites/default/files/managed/bb/bf/Apache-Zeppelin.pdf >>>>> >>>>> >>>>> >>>>> Thanks >>>>> >>>>> Karthik Vadla >>>>> >>>>> >>>>> >>>>> *From:* ÐΞ€ρ@Ҝ (๏̯͡๏) [mailto:deepuj...@gmail.com] >>>>> *Sent:* Sunday, August 2, 2015 9:25 PM >>>>> *To:* users@zeppelin.incubator.apache.org >>>>> *Subject:* Yarn + Spark + Zepplin ? >>>>> >>>>> >>>>> >>>>> Hello, >>>>> >>>>> I would like to try out Zepplin and hence i got a 7 node Hadoop >>>>> cluster with spark history server setup. I am able to run sample spark >>>>> applications on my YARN cluster. >>>>> >>>>> >>>>> >>>>> I have no clue how to get zepplin to connect to this YARN cluster. >>>>> Under https://zeppelin.incubator.apache.org/docs/install/install.html >>>>> i see MASTER to point to spark master. I do not have a spark master >>>>> running. >>>>> >>>>> >>>>> >>>>> How do i get Zepplin to be able to read data from YARN cluster ? >>>>> Please share documentation. >>>>> >>>>> >>>>> >>>>> Regards, >>>>> >>>>> Deepak >>>>> >>>>> >>>>> >>>> >>>> >>>> >>>> -- >>>> Christian Tzolov <http://www.linkedin.com/in/tzolov> | Solution >>>> Architect, EMEA Practice Team | Pivotal <http://pivotal.io/> >>>> ctzo...@pivotal.io|+31610285517 >>>> >>> >>> >>> >>> -- >>> Deepak >>> >>> >> >> >> -- >> Deepak >> >> > > > -- > Deepak > > -- Deepak