Hi,

You should check your firewalls because Spark executor try to connect Spark
driver which runs in your client machine in yarn-client mode.

Regards
JL

On Tue, Aug 4, 2015 at 6:49 PM, manya cancerian <manyacancer...@gmail.com>
wrote:

> hi Guys,
>
> I am trying to run Zeppelin using Yarn as resource manager. I have made
> following changes
> 1- I have specified master as 'yarn-client' in the interpreter settings
> using UI
> 2. I have specified HADOOP_CONF_DIR as conf directory containing hadoop
> configuration files
>
> In my scenario I have three machines.
> a- Client Machine where zeppelin is installed
> b- Machine where YARN cluster manager along with nodemanager, namenode,
> datanode, secondary namenode are running
> c- Machine where only nodemanager and datanode is running
>
>
> When I submit job from my client machine , it gets submitted to yarn but
> fails with following exception -
>
>
> 5/08/04 15:08:05 ERROR yarn.ApplicationMaster: Uncaught exception:
> org.apache.spark.SparkException: Failed to connect to driver!
>       at 
> org.apache.spark.deploy.yarn.ApplicationMaster.waitForSparkDriver(ApplicationMaster.scala:424)
>       at 
> org.apache.spark.deploy.yarn.ApplicationMaster.runExecutorLauncher(ApplicationMaster.scala:284)
>       at 
> org.apache.spark.deploy.yarn.ApplicationMaster.run(ApplicationMaster.scala:146)
>       at 
> org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$main$1.apply$mcV$sp(ApplicationMaster.scala:575)
>       at 
> org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:60)
>       at 
> org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:59)
>       at java.security.AccessController.doPrivileged(Native Method)
>       at javax.security.auth.Subject.doAs(Subject.java:415)
>       at 
> org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
>       at 
> org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:59)
>       at 
> org.apache.spark.deploy.yarn.ApplicationMaster$.main(ApplicationMaster.scala:573)
>       at 
> org.apache.spark.deploy.yarn.ExecutorLauncher$.main(ApplicationMaster.scala:596)
>       at 
> org.apache.spark.deploy.yarn.ExecutorLauncher.main(ApplicationMaster.scala)
> 15/08/04 15:08:05 INFO yarn.ApplicationMaster: Final app status: FAILED, 
> exitCode: 10, (reason: Uncaught exception: Failed to connect to driver!)
>
>
>
> Any help is much appreciated!
>
>
>
>
> Regards
>
> Monica
>
>
>
>
>
> On Tue, Aug 4, 2015 at 10:57 AM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
> wrote:
>
>> That worked.  Why ?
>> Can you share a comprehensive iist of examples.
>>
>>
>> On Mon, Aug 3, 2015 at 4:59 PM, Alex <abezzu...@nflabs.com> wrote:
>>
>>> Hi,
>>>
>>> inside %spark you do not need to create SqlContext manually:
>>> as with "sc" for SparkContext, Interpreter already have injected "sqlc"
>>> val.
>>>
>>> Also AFAIK println statement should be in the separate paragraph.
>>>
>>> Can you try using that and see if it helps?
>>>
>>> --
>>> Kind regards,
>>> Alexander
>>>
>>> On 04 Aug 2015, at 05:58, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote:
>>>
>>> I am unable to see the visualization with Zeppelin from blog :
>>> http://hortonworks.com/blog/introduction-to-data-science-with-apache-spark/
>>>
>>>
>>> Notebook
>>> %spark
>>> val sqlContext = new org.apache.spark.sql.SQLContext(sc)
>>> import sqlContext.implicits._
>>> import java.sql.Date
>>> import org.apache.spark.sql.Row
>>>
>>> case class Log(level: String, date: Date, fileName: String)
>>>
>>> import java.text.SimpleDateFormat
>>>
>>>     val df = new SimpleDateFormat("yyyy-mm-dd HH:mm:ss,SSS")
>>>
>>>     val ambari = ambariLogs.map { line =>
>>>         val s =  line.split(" ")
>>>         val logLevel = s(0)
>>>         val dateTime = df.parse(s(1) + " " + s(2))
>>>         val fileName = s(3).split(":")(0)
>>>         Log(logLevel,new Date(dateTime.getTime()), fileName)}.toDF()
>>> ambari.registerTempTable("ambari")
>>>
>>>
>>> //ambari.groupBy("level").count()
>>> sqlContext.sql("SELECT COUNT(*) from ambari")
>>>
>>> Output:
>>>
>>> sqlContext: org.apache.spark.sql.SQLContext =
>>> org.apache.spark.sql.SQLContext@5ca68ee6 import sqlContext.implicits._
>>> import java.sql.Date import org.apache.spark.sql.Row defined class Log
>>> import java.text.SimpleDateFormat df: java.text.SimpleDateFormat =
>>> java.text.SimpleDateFormat@98f267e7 ambari:
>>> org.apache.spark.sql.DataFrame = [level: string, date: date, fileName:
>>> string] res74: org.apache.spark.sql.DataFrame = [c0: bigint]
>>>
>>>
>>> Hence the table ambari is created successfully.
>>>
>>> In a new note, i wrote this
>>>
>>> %spark
>>> import org.apache.spark.sql.Row
>>>
>>>  val result = sqlContext.sql("SELECT level, COUNT(1) from ambari group
>>> by level").map {
>>>  case Row(level: String, count: Long) => {
>>>       level + "\t" + count
>>>  }
>>> }.collect()
>>>
>>> println("%table Log Level\tCount\n" + result.mkString("\n"))
>>>
>>>
>>> Output:
>>> import org.apache.spark.sql.Row result: Array[String] = Array(INFO 2444,
>>> WARNING 3) %table Log Level Count INFO 2444 WARNING 3
>>>
>>> I did not get graph rendering despite am outputing %table from println.
>>>
>>> Any suggestions ?
>>>
>>>
>>> On Mon, Aug 3, 2015 at 1:47 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
>>> wrote:
>>>
>>>> Fixed it
>>>>
>>>>  mvn clean package -Pspark-1.3 -Dspark.version=1.3.1
>>>> -Dhadoop.version=2.7.0 -Phadoop-2.6 -Pyarn -DskipTests
>>>>
>>>> Earlier i had
>>>>
>>>> mvn clean install -DskipTests -Pspark-1.3 -Dspark.version=1.3.1
>>>> -Phadoop-2.7 -Pyarn
>>>>
>>>> On Mon, Aug 3, 2015 at 1:31 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
>>>> wrote:
>>>>
>>>>> I have hadoop cluster up using Ambari. It also allowed me to install
>>>>> Spark 1.3.1 and i can run sample spark application & Yarn application. So
>>>>> cluster is up and running fine.
>>>>>
>>>>> I got Zeppelin setup on a new box and was able to launch UI.
>>>>>
>>>>> I modified spark interpreter to set
>>>>>
>>>>> masteryarn-clientspark.app.nameZeppelinspark.cores.max
>>>>> spark.driver.extraJavaOptions-Dhdp.version=2.3.1.0-2574
>>>>> spark.executor.memory512mspark.home/usr/hdp/2.3.1.0-2574/spark
>>>>> spark.yarn.am.extraJavaOptions-Dhdp.version=2.3.1.0-2574spark.yarn.jar
>>>>> /home/zeppelin/incubator-zeppelin/interpreter/spark/zeppelin-spark-0.6.0-incubating-SNAPSHOT.jar
>>>>> zeppelin.dep.localrepolocal-repo
>>>>>
>>>>> When i run a spark notebook
>>>>> %spark
>>>>> val ambariLogs =
>>>>> sc.textFile("file:///var/log/ambari-agent/ambari-agent.log")
>>>>> ambariLogs.take(10).mkString("\n")
>>>>>
>>>>> (The location exists)
>>>>>
>>>>> I see two exceptions in Zeppelin spark interpreter logs
>>>>>
>>>>> ERROR [2015-08-03 13:30:50,262] ({pool-1-thread-2}
>>>>> ProcessFunction.java[process]:41) - Internal error processing getProgress
>>>>>
>>>>> java.lang.NoClassDefFoundError: Could not initialize class
>>>>> org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$
>>>>>
>>>>> at
>>>>> org.apache.spark.deploy.yarn.ClientArguments.<init>(ClientArguments.scala:38)
>>>>>
>>>>> at
>>>>> org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:55)
>>>>>
>>>>> at
>>>>> org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:141)
>>>>>
>>>>> at org.apache.spark.SparkContext.<init>(SparkContext.scala:381)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:301)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:146)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:423)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:74)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.interpreter.LazyOpenInterpreter.getProgress(LazyOpenInterpreter.java:109)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer.getProgress(RemoteInterpreterServer.java:298)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.interpreter.thrift.RemoteInterpreterService$Processor$getProgress.getResult(RemoteInterpreterService.java:1068)
>>>>>
>>>>> at
>>>>> org.apache.zeppelin.interpreter.thrift.RemoteInterpreterService$Processor$getProgress.getResult(RemoteInterpreterService.java:1053)
>>>>>
>>>>> at org.apache.thrift.ProcessFunction.process(ProcessFunction.java:39)
>>>>>
>>>>> at org.apache.thrift.TBaseProcessor.process(TBaseProcessor.java:39)
>>>>>
>>>>> at
>>>>> org.apache.thrift.server.TThreadPoolServer$WorkerProcess.run(TThreadPoolServer.java:206)
>>>>>
>>>>> at
>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>>>
>>>>> at
>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>>>
>>>>> at java.lang.Thread.run(Thread.java:745)
>>>>>
>>>>>
>>>>> AND
>>>>>
>>>>>
>>>>> WARN [2015-08-03 13:30:50,085] ({pool-1-thread-2}
>>>>> Logging.scala[logWarning]:71) - Service 'SparkUI' could not bind on port
>>>>> 4041. Attempting port 4042.
>>>>>
>>>>>  INFO [2015-08-03 13:30:50,112] ({pool-1-thread-2}
>>>>> Server.java[doStart]:272) - jetty-8.y.z-SNAPSHOT
>>>>>
>>>>>  WARN [2015-08-03 13:30:50,123] ({pool-1-thread-2}
>>>>> AbstractLifeCycle.java[setFailed]:204) - FAILED
>>>>> SelectChannelConnector@0.0.0.0:4042: java.net.BindException: Address
>>>>> already in use
>>>>>
>>>>> java.net.BindException: Address already in use
>>>>>
>>>>> at sun.nio.ch.Net.bind0(Native Method)
>>>>>
>>>>> at sun.nio.ch.Net.bind(Net.java:444)
>>>>>
>>>>> at sun.nio.ch.Net.bind(Net.java:436)
>>>>>
>>>>> at
>>>>> sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:214)
>>>>>
>>>>>
>>>>> Any suggestions ?
>>>>>
>>>>>
>>>>> On Mon, Aug 3, 2015 at 11:00 AM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
>>>>> wrote:
>>>>>
>>>>>> Thanks a lot for all these documents. Appreciate your effort & time.
>>>>>>
>>>>>> On Mon, Aug 3, 2015 at 10:15 AM, Christian Tzolov <ctzo...@pivotal.io
>>>>>> > wrote:
>>>>>>
>>>>>>> ÐΞ€ρ@Ҝ (๏̯͡๏),
>>>>>>>
>>>>>>> I've successfully run Zeppelin with Spark on YARN. I'm using Ambari
>>>>>>> and PivotalHD30. PHD30 is ODP compliant so you should be able to repeat 
>>>>>>> the
>>>>>>> configuration for HDP (e.g. hortonworks).
>>>>>>>
>>>>>>> 1. Before you start with Zeppelin, make sure that your Spark/YARN
>>>>>>> env. works from the command line (e.g run Pi test). If it doesn't work 
>>>>>>> make
>>>>>>> sure that the hdp.version is set correctly or you can hardcode the
>>>>>>> stack.name and stack.version properties as Ambari Custom yarn-site
>>>>>>> properties (that is what i did).
>>>>>>>
>>>>>>> 2. Your Zeppelin should be build with proper Spark and Hadoop
>>>>>>> versions and YARN support enabled. In my case used this build command:
>>>>>>>
>>>>>>> mvn clean package -Pspark-1.4 -Dspark.version=1.4.1
>>>>>>> -Dhadoop.version=2.6.0 -Phadoop-2.6 -Pyarn -DskipTests -Pbuild-distr
>>>>>>>
>>>>>>> 3. Open the Spark interpreter configuration and set 'master'
>>>>>>> property to 'yarn-client' ( e.g. master=yarn-client). then press Save.
>>>>>>>
>>>>>>> 4. In (conf/zeppelin-env.sh) set HADOOP_CONF_DIR for PHD and HDP it
>>>>>>> will look like this:
>>>>>>> export HADOOP_CONF_DIR=/etc/hadoop/conf
>>>>>>>
>>>>>>> 5. (optional) i've restarted the zeppelin daemon but i don't think
>>>>>>> this is required.
>>>>>>>
>>>>>>> 6. Make sure that HDFS has /user/<zeppelin user>  folder exists and
>>>>>>> has HDFS write permissions. Otherwise you can create it like this:
>>>>>>>   sudo -u hdfs hdfs dfs -mkdir /user/<zeppelin user>
>>>>>>>   sudo -u hdfs hdfs dfs -chown -R <zeppelin user>t:hdfs
>>>>>>> /user/<zeppelin user>
>>>>>>>
>>>>>>> Good to go!
>>>>>>>
>>>>>>> Cheers,
>>>>>>> Christian
>>>>>>>
>>>>>>> On 3 August 2015 at 17:50, Vadla, Karthik <karthik.va...@intel.com>
>>>>>>> wrote:
>>>>>>>
>>>>>>>> Hi Deepak,
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> I have documented everything here.
>>>>>>>>
>>>>>>>> Please check published document.
>>>>>>>>
>>>>>>>>
>>>>>>>> https://software.intel.com/sites/default/files/managed/bb/bf/Apache-Zeppelin.pdf
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> Thanks
>>>>>>>>
>>>>>>>> Karthik Vadla
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> *From:* ÐΞ€ρ@Ҝ (๏̯͡๏) [mailto:deepuj...@gmail.com]
>>>>>>>> *Sent:* Sunday, August 2, 2015 9:25 PM
>>>>>>>> *To:* users@zeppelin.incubator.apache.org
>>>>>>>> *Subject:* Yarn + Spark + Zepplin ?
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> Hello,
>>>>>>>>
>>>>>>>> I would like to try out Zepplin and hence i got a 7 node Hadoop
>>>>>>>> cluster with spark history server setup. I am able to run sample spark
>>>>>>>> applications on my YARN cluster.
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> I have no clue how to get zepplin to connect to this YARN cluster.
>>>>>>>> Under
>>>>>>>> https://zeppelin.incubator.apache.org/docs/install/install.html i
>>>>>>>> see MASTER to point to spark master. I do not have a spark master
>>>>>>>> running.
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> How do i get Zepplin to be able to read data from YARN cluster ?
>>>>>>>> Please share documentation.
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> Regards,
>>>>>>>>
>>>>>>>> Deepak
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> --
>>>>>>> Christian Tzolov <http://www.linkedin.com/in/tzolov> | Solution
>>>>>>> Architect, EMEA Practice Team | Pivotal <http://pivotal.io/>
>>>>>>> ctzo...@pivotal.io|+31610285517
>>>>>>>
>>>>>>
>>>>>>
>>>>>>
>>>>>> --
>>>>>> Deepak
>>>>>>
>>>>>>
>>>>>
>>>>>
>>>>> --
>>>>> Deepak
>>>>>
>>>>>
>>>>
>>>>
>>>> --
>>>> Deepak
>>>>
>>>>
>>>
>>>
>>> --
>>> Deepak
>>>
>>>
>>
>>
>> --
>> Deepak
>>
>>
>


-- 
이종열, Jongyoul Lee, 李宗烈
http://madeng.net

Reply via email to