Similar bug reported before ZEPPELIN-108
   <https://issues.apache.org/jira/browse/ZEPPELIN-108>


On 8 September 2015 at 14:33, Sajeevan Achuthan <achuthan.sajee...@gmail.com
> wrote:

> Hi Todd,
>    Thanks for the quick reply. I tried that option too and I go the error
> below. Any idea?
>
> <console>:102: error: overloaded method constructor StreamingContext with
> alternatives: (path: String,sparkContext:
> org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext)org.apache.spark.streaming.StreamingContext
> <and> (path: String,hadoopConf:
> org.apache.hadoop.conf.Configuration)org.apache.spark.streaming.StreamingContext
> <and> (conf: org.apache.spark.SparkConf,batchDuration:
> org.apache.spark.streaming.Duration)org.apache.spark.streaming.StreamingContext
> <and> (sparkContext:
> org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext,batchDuration:
> org.apache.spark.streaming.Duration)org.apache.spark.streaming.StreamingContext
> cannot be applied to
> (org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext,
> org.apache.spark.streaming.Duration) val ssc = new StreamingContext(sc,
> Milliseconds(2000))
>
> On 8 September 2015 at 13:53, Todd Nist <tsind...@gmail.com> wrote:
>
>> You are passing a new SparkConf to the StreamingContext, which will cause
>> the creation of a new SparkContext:
>>
>> *StreamingContext(conf: **SparkConf*
>> <https://spark.apache.org/docs/1.4.1/api/scala/org/apache/spark/SparkConf.html>
>> *, batchDuration: **Duration*
>> <https://spark.apache.org/docs/1.4.1/api/scala/org/apache/spark/streaming/Duration.html>
>> *)*
>>
>> Create a StreamingContext by providing the configuration necessary for a
>> new SparkContext.
>>
>> Is there a reason you can not use the existing SparkContext created by
>> Zeppelin?  Then you can just do something like:
>>
>> val ssc = new StreamingContext(sc, Milliseconds(
>> SparkStreamingBatchInterval))
>>
>> ssc.checkpoint(SparkCheckpointDir)
>>
>> ...
>>
>> Where "sc" is the Zeppelin provided SparkContext.
>>
>> -Todd
>>
>>
>>
>> On Tue, Sep 8, 2015 at 8:11 AM, Sajeevan Achuthan <
>> achuthan.sajee...@gmail.com> wrote:
>>
>>> Hi
>>>   The problem is the Spark is allowing to create two contexts, See the
>>> log below. Could you please let me know , how to fix this problem?
>>>
>>> WARN [2015-09-08 13:09:01,191] ({pool-2-thread-5}
>>> Logging.scala[logWarning]:92) - Multiple running SparkContexts detected in
>>> the same JVM!
>>> org.apache.spark.SparkException: Only one SparkContext may be running in
>>> this JVM (see SPARK-2243). To ignore this error, set
>>> spark.driver.allowMultipleContexts = true. The currently running
>>> SparkContext was created at:
>>> org.apache.spark.SparkContext.<init>(SparkContext.scala:81)
>>>
>>> org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:301)
>>>
>>> org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:146)
>>>
>>> org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:423)
>>>
>>> org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:73)
>>>
>>> org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68)
>>>
>>> org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:92)
>>>
>>> org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:277)
>>> org.apache.zeppelin.scheduler.Job.run(Job.java:170)
>>> org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:118)
>>> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
>>> java.util.concurrent.FutureTask.run(FutureTask.java:266)
>>>
>>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
>>>
>>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
>>>
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>> java.lang.Thread.run(Thread.java:745)
>>> at
>>> org.apache.spark.SparkContext$$anonfun$assertNoOtherContextIsRunning$1.apply(SparkContext.scala:2083)
>>> at
>>> org.apache.spark.SparkContext$$anonfun$assertNoOtherContextIsRunning$1.apply(SparkContext.scala:2065)
>>> at scala.Option.foreach(Option.scala:236)
>>> at
>>> org.apache.spark.SparkContext$.assertNoOtherContextIsRunning(SparkContext.scala:2065)
>>> at
>>> org.apache.spark.SparkContext$.setActiveContext(SparkContext.scala:2151)
>>> at org.apache.spark.SparkContext.<init>(SparkContext.scala:2023)
>>> at
>>> org.apache.spark.streaming.StreamingContext$.createNewSparkContext(StreamingContext.scala:834)
>>> at
>>> org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:80)
>>> at
>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:45)
>>> at
>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:50)
>>> at
>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:52)
>>> at
>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:54)
>>> at
>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:56)
>>> at
>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:58)
>>> at $line58.$
>>> /Saj
>>>
>>> On 8 September 2015 at 12:25, Todd Nist <tsind...@gmail.com> wrote:
>>>
>>>> I do not see that your importing the following:
>>>>
>>>>  import org.apache.spark.sql._
>>>>
>>>> Which I believe is where you will find the DataFrame.toDF function.
>>>>
>>>> HTH.
>>>>
>>>> -Todd
>>>>
>>>> On Mon, Sep 7, 2015 at 5:49 PM, Sajeevan Achuthan <
>>>> achuthan.sajee...@gmail.com> wrote:
>>>>
>>>>> Hi Moon,
>>>>>    Thanks for the reply, I tried that option too. Unfortunately, I
>>>>> tried that option too and I got the error
>>>>> data: org.apache.spark.streaming.dstream.DStream[CELL_KPIS] =
>>>>> org.apache.spark.streaming.dstream.MappedDStream@5f3ea8bb
>>>>> <console>:49: error: value toDF is not a member of
>>>>> org.apache.spark.rdd.RDD[CELL_KPIS]
>>>>> accessLogs.toDF.registerTempTable("RAS") ^
>>>>> Any idea?
>>>>>
>>>>> On 7 September 2015 at 17:30, moon soo Lee <m...@apache.org> wrote:
>>>>>
>>>>>> Hi,
>>>>>>
>>>>>> I think you will need to convert RDD to data frame using .toDF(), like
>>>>>> accessLogs.toDF.registerTempTable("RAS")
>>>>>>
>>>>>> Thanks,
>>>>>> moon
>>>>>>
>>>>>> On Mon, Sep 7, 2015 at 3:34 AM Sajeevan Achuthan <
>>>>>> achuthan.sajee...@gmail.com> wrote:
>>>>>>
>>>>>>> Zeppelin, an excellent tool. I am trying to implement a streaming
>>>>>>> application. I get an error while deploying my application. See my code
>>>>>>> below
>>>>>>>
>>>>>>>
>>>>>>> import org.apache.spark.SparkContext
>>>>>>> import org.apache.spark.SparkContext._
>>>>>>> import org.apache.spark.SparkConf
>>>>>>> import org.apache.spark.streaming.StreamingContext
>>>>>>> import org.apache.spark.streaming.Seconds
>>>>>>> import org.apache.spark.sql.SQLContext
>>>>>>>   val sparkConf = new
>>>>>>> SparkConf().setAppName("PEPA").setMaster("local[*]").set("spark.driver.allowMultipleContexts",
>>>>>>> "true")
>>>>>>>
>>>>>>>         import org.apache.spark.streaming.kafka._
>>>>>>>         val ssc = new StreamingContext(sparkConf, Seconds(2))
>>>>>>>
>>>>>>>         ssc.checkpoint("checkpoint")
>>>>>>>         val topicMap = Map("incoming"->1)
>>>>>>>
>>>>>>>         val record = KafkaUtils.createStream(ssc, "localhost", "1",
>>>>>>> topicMap).map(_._2)
>>>>>>>          record.print()
>>>>>>>         case class
>>>>>>> CELL_KPIS(ECELL_Name:String,CGI:String,Number_of_Times_Interf:Double,TAOF:Double,PHL:Double,NPCCHL:Double,LRSRP:Double,NC:Double)
>>>>>>>         val data =
>>>>>>> record.map(s=>s.split(",")).filter(s=>s(0)!="\"ECELL_Name\"").map(
>>>>>>>             s=>CELL_KPIS(s(0), s(1), s(2).toDouble, s(3).toDouble,
>>>>>>> s(5).toDouble,s(6).toDouble, s(7).toDouble, s(8).toDouble)
>>>>>>>         )
>>>>>>>         data.foreachRDD {accessLogs =>
>>>>>>>         import sqlContext.implicits._
>>>>>>>        accessLogs.registerTempTable("RAS")
>>>>>>>
>>>>>>>         }
>>>>>>>         ssc.start()
>>>>>>>    ssc.awaitTermination()
>>>>>>>
>>>>>>> And I get error
>>>>>>> import org.apache.spark.SparkContext import
>>>>>>> org.apache.spark.SparkContext._ import org.apache.spark.SparkConf import
>>>>>>> org.apache.spark.streaming.StreamingContext import
>>>>>>> org.apache.spark.streaming.Seconds import 
>>>>>>> org.apache.spark.sql.SQLContext
>>>>>>> sparkConf: org.apache.spark.SparkConf = 
>>>>>>> org.apache.spark.SparkConf@2e5779a
>>>>>>> import org.apache.spark.streaming.kafka._ ssc:
>>>>>>> org.apache.spark.streaming.StreamingContext =
>>>>>>> org.apache.spark.streaming.StreamingContext@48621ee1 topicMap:
>>>>>>> scala.collection.immutable.Map[String,Int] = Map(incoming -> 1) record:
>>>>>>> org.apache.spark.streaming.dstream.DStream[String] =
>>>>>>> org.apache.spark.streaming.dstream.MappedDStream@6290e75e defined
>>>>>>> class CELL_KPIS data: 
>>>>>>> org.apache.spark.streaming.dstream.DStream[CELL_KPIS]
>>>>>>> = org.apache.spark.streaming.dstream.MappedDStream@4bda38c3
>>>>>>>
>>>>>>> <console>:55: error: value registerTempTable is not a member of
>>>>>>> org.apache.spark.rdd.RDD[CELL_KPIS] accessLogs.registerTempTable("RAS")
>>>>>>>
>>>>>>> *My configuration for Zeppelin*
>>>>>>>
>>>>>>>
>>>>>>> export MASTER=spark://localhost:7077
>>>>>>> export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_05
>>>>>>> export ZEPPELIN_PORT=9090
>>>>>>> export ZEPPELIN_SPARK_CONCURRENTSQL=false
>>>>>>> export ZEPPELIN_SPARK_USEHIVECONTEXT=false
>>>>>>> #'export MASTER=local[*]
>>>>>>> export SPARK_HOME=/home/anauser/spark-1.3/spark-1.3.0-bin-cdh4
>>>>>>>
>>>>>>> *Interpreter configuration for spark *
>>>>>>>
>>>>>>> "2AW247KM7": { "id": "2AW247KM7", "name": "spark", "group": "spark",
>>>>>>> "properties": { "spark.cores.max": "", "spark.yarn.jar": "", "master":
>>>>>>> "local[*]", "zeppelin.spark.maxResult": "1000", 
>>>>>>> "zeppelin.dep.localrepo":
>>>>>>> "local-repo", "spark.app.name": "APP3", "spark.executor.memory":
>>>>>>> "5G", "zeppelin.spark.useHiveContext": "false",
>>>>>>> "spark.driver.allowMultipleContexts": "true", "args": "", "spark.home":
>>>>>>> "/home/anauser/spark-1.3/spark-1.3.0-bin-cdh4",
>>>>>>> "zeppelin.spark.concurrentSQL": "true", "zeppelin.pyspark.python": 
>>>>>>> "python"
>>>>>>> }, "interpreterGroup": [ { "class":
>>>>>>> "org.apache.zeppelin.spark.SparkInterpreter", "name": "spark" }, { 
>>>>>>> "class":
>>>>>>> "org.apache.zeppelin.spark.PySparkInterpreter", "name": "pyspark" }, {
>>>>>>> "class": "org.apache.zeppelin.spark.SparkSqlInterpreter", "name": "sql" 
>>>>>>> },
>>>>>>> { "class": "org.apache.zeppelin.spark.DepInterpreter", "name": "dep" } 
>>>>>>> ],
>>>>>>> "option": { "remote": true } }
>>>>>>> Is there any problem in my code or setup ?
>>>>>>> Any help very much appreciated.
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>
>

Reply via email to