0.5.0

On 9 September 2015 at 15:43, moon soo Lee <m...@apache.org> wrote:

> Which version of Zeppelin do you use?
>
> On Wed, Sep 9, 2015 at 7:29 AM Sajeevan Achuthan <
> achuthan.sajee...@gmail.com> wrote:
>
>> Any help?
>>
>> On 9 September 2015 at 00:57, Sajeevan Achuthan <
>> achuthan.sajee...@gmail.com> wrote:
>>
>>>
>>>    Similar bug reported before ZEPPELIN-108
>>>    <https://issues.apache.org/jira/browse/ZEPPELIN-108>
>>>
>>>
>>> On 8 September 2015 at 14:33, Sajeevan Achuthan <
>>> achuthan.sajee...@gmail.com> wrote:
>>>
>>>> Hi Todd,
>>>>    Thanks for the quick reply. I tried that option too and I go the
>>>> error below. Any idea?
>>>>
>>>> <console>:102: error: overloaded method constructor StreamingContext
>>>> with alternatives: (path: String,sparkContext:
>>>> org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext)org.apache.spark.streaming.StreamingContext
>>>> <and> (path: String,hadoopConf:
>>>> org.apache.hadoop.conf.Configuration)org.apache.spark.streaming.StreamingContext
>>>> <and> (conf: org.apache.spark.SparkConf,batchDuration:
>>>> org.apache.spark.streaming.Duration)org.apache.spark.streaming.StreamingContext
>>>> <and> (sparkContext:
>>>> org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext,batchDuration:
>>>> org.apache.spark.streaming.Duration)org.apache.spark.streaming.StreamingContext
>>>> cannot be applied to
>>>> (org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.org.apache.spark.SparkContext,
>>>> org.apache.spark.streaming.Duration) val ssc = new StreamingContext(sc,
>>>> Milliseconds(2000))
>>>>
>>>> On 8 September 2015 at 13:53, Todd Nist <tsind...@gmail.com> wrote:
>>>>
>>>>> You are passing a new SparkConf to the StreamingContext, which will
>>>>> cause the creation of a new SparkContext:
>>>>>
>>>>> *StreamingContext(conf: **SparkConf*
>>>>> <https://spark.apache.org/docs/1.4.1/api/scala/org/apache/spark/SparkConf.html>
>>>>> *, batchDuration: **Duration*
>>>>> <https://spark.apache.org/docs/1.4.1/api/scala/org/apache/spark/streaming/Duration.html>
>>>>> *)*
>>>>>
>>>>> Create a StreamingContext by providing the configuration necessary for
>>>>> a new SparkContext.
>>>>>
>>>>> Is there a reason you can not use the existing SparkContext created by
>>>>> Zeppelin?  Then you can just do something like:
>>>>>
>>>>> val ssc = new StreamingContext(sc, Milliseconds(
>>>>> SparkStreamingBatchInterval))
>>>>>
>>>>> ssc.checkpoint(SparkCheckpointDir)
>>>>>
>>>>> ...
>>>>>
>>>>> Where "sc" is the Zeppelin provided SparkContext.
>>>>>
>>>>> -Todd
>>>>>
>>>>>
>>>>>
>>>>> On Tue, Sep 8, 2015 at 8:11 AM, Sajeevan Achuthan <
>>>>> achuthan.sajee...@gmail.com> wrote:
>>>>>
>>>>>> Hi
>>>>>>   The problem is the Spark is allowing to create two contexts, See
>>>>>> the log below. Could you please let me know , how to fix this problem?
>>>>>>
>>>>>> WARN [2015-09-08 13:09:01,191] ({pool-2-thread-5}
>>>>>> Logging.scala[logWarning]:92) - Multiple running SparkContexts detected 
>>>>>> in
>>>>>> the same JVM!
>>>>>> org.apache.spark.SparkException: Only one SparkContext may be running
>>>>>> in this JVM (see SPARK-2243). To ignore this error, set
>>>>>> spark.driver.allowMultipleContexts = true. The currently running
>>>>>> SparkContext was created at:
>>>>>> org.apache.spark.SparkContext.<init>(SparkContext.scala:81)
>>>>>>
>>>>>> org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:301)
>>>>>>
>>>>>> org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:146)
>>>>>>
>>>>>> org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:423)
>>>>>>
>>>>>> org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:73)
>>>>>>
>>>>>> org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68)
>>>>>>
>>>>>> org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:92)
>>>>>>
>>>>>> org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:277)
>>>>>> org.apache.zeppelin.scheduler.Job.run(Job.java:170)
>>>>>>
>>>>>> org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:118)
>>>>>>
>>>>>> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
>>>>>> java.util.concurrent.FutureTask.run(FutureTask.java:266)
>>>>>>
>>>>>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
>>>>>>
>>>>>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
>>>>>>
>>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>>>>
>>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>>>> java.lang.Thread.run(Thread.java:745)
>>>>>> at
>>>>>> org.apache.spark.SparkContext$$anonfun$assertNoOtherContextIsRunning$1.apply(SparkContext.scala:2083)
>>>>>> at
>>>>>> org.apache.spark.SparkContext$$anonfun$assertNoOtherContextIsRunning$1.apply(SparkContext.scala:2065)
>>>>>> at scala.Option.foreach(Option.scala:236)
>>>>>> at
>>>>>> org.apache.spark.SparkContext$.assertNoOtherContextIsRunning(SparkContext.scala:2065)
>>>>>> at
>>>>>> org.apache.spark.SparkContext$.setActiveContext(SparkContext.scala:2151)
>>>>>> at org.apache.spark.SparkContext.<init>(SparkContext.scala:2023)
>>>>>> at
>>>>>> org.apache.spark.streaming.StreamingContext$.createNewSparkContext(StreamingContext.scala:834)
>>>>>> at
>>>>>> org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:80)
>>>>>> at
>>>>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:45)
>>>>>> at
>>>>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:50)
>>>>>> at
>>>>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:52)
>>>>>> at
>>>>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:54)
>>>>>> at
>>>>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:56)
>>>>>> at
>>>>>> $line58.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:58)
>>>>>> at $line58.$
>>>>>> /Saj
>>>>>>
>>>>>> On 8 September 2015 at 12:25, Todd Nist <tsind...@gmail.com> wrote:
>>>>>>
>>>>>>> I do not see that your importing the following:
>>>>>>>
>>>>>>>  import org.apache.spark.sql._
>>>>>>>
>>>>>>> Which I believe is where you will find the DataFrame.toDF function.
>>>>>>>
>>>>>>> HTH.
>>>>>>>
>>>>>>> -Todd
>>>>>>>
>>>>>>> On Mon, Sep 7, 2015 at 5:49 PM, Sajeevan Achuthan <
>>>>>>> achuthan.sajee...@gmail.com> wrote:
>>>>>>>
>>>>>>>> Hi Moon,
>>>>>>>>    Thanks for the reply, I tried that option too. Unfortunately, I
>>>>>>>> tried that option too and I got the error
>>>>>>>> data: org.apache.spark.streaming.dstream.DStream[CELL_KPIS] =
>>>>>>>> org.apache.spark.streaming.dstream.MappedDStream@5f3ea8bb
>>>>>>>> <console>:49: error: value toDF is not a member of
>>>>>>>> org.apache.spark.rdd.RDD[CELL_KPIS]
>>>>>>>> accessLogs.toDF.registerTempTable("RAS") ^
>>>>>>>> Any idea?
>>>>>>>>
>>>>>>>> On 7 September 2015 at 17:30, moon soo Lee <m...@apache.org> wrote:
>>>>>>>>
>>>>>>>>> Hi,
>>>>>>>>>
>>>>>>>>> I think you will need to convert RDD to data frame using .toDF(),
>>>>>>>>> like
>>>>>>>>> accessLogs.toDF.registerTempTable("RAS")
>>>>>>>>>
>>>>>>>>> Thanks,
>>>>>>>>> moon
>>>>>>>>>
>>>>>>>>> On Mon, Sep 7, 2015 at 3:34 AM Sajeevan Achuthan <
>>>>>>>>> achuthan.sajee...@gmail.com> wrote:
>>>>>>>>>
>>>>>>>>>> Zeppelin, an excellent tool. I am trying to implement a streaming
>>>>>>>>>> application. I get an error while deploying my application. See my 
>>>>>>>>>> code
>>>>>>>>>> below
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>> import org.apache.spark.SparkContext
>>>>>>>>>> import org.apache.spark.SparkContext._
>>>>>>>>>> import org.apache.spark.SparkConf
>>>>>>>>>> import org.apache.spark.streaming.StreamingContext
>>>>>>>>>> import org.apache.spark.streaming.Seconds
>>>>>>>>>> import org.apache.spark.sql.SQLContext
>>>>>>>>>>   val sparkConf = new
>>>>>>>>>> SparkConf().setAppName("PEPA").setMaster("local[*]").set("spark.driver.allowMultipleContexts",
>>>>>>>>>> "true")
>>>>>>>>>>
>>>>>>>>>>         import org.apache.spark.streaming.kafka._
>>>>>>>>>>         val ssc = new StreamingContext(sparkConf, Seconds(2))
>>>>>>>>>>
>>>>>>>>>>         ssc.checkpoint("checkpoint")
>>>>>>>>>>         val topicMap = Map("incoming"->1)
>>>>>>>>>>
>>>>>>>>>>         val record = KafkaUtils.createStream(ssc, "localhost",
>>>>>>>>>> "1", topicMap).map(_._2)
>>>>>>>>>>          record.print()
>>>>>>>>>>         case class
>>>>>>>>>> CELL_KPIS(ECELL_Name:String,CGI:String,Number_of_Times_Interf:Double,TAOF:Double,PHL:Double,NPCCHL:Double,LRSRP:Double,NC:Double)
>>>>>>>>>>         val data =
>>>>>>>>>> record.map(s=>s.split(",")).filter(s=>s(0)!="\"ECELL_Name\"").map(
>>>>>>>>>>             s=>CELL_KPIS(s(0), s(1), s(2).toDouble,
>>>>>>>>>> s(3).toDouble, s(5).toDouble,s(6).toDouble, s(7).toDouble, 
>>>>>>>>>> s(8).toDouble)
>>>>>>>>>>         )
>>>>>>>>>>         data.foreachRDD {accessLogs =>
>>>>>>>>>>         import sqlContext.implicits._
>>>>>>>>>>        accessLogs.registerTempTable("RAS")
>>>>>>>>>>
>>>>>>>>>>         }
>>>>>>>>>>         ssc.start()
>>>>>>>>>>    ssc.awaitTermination()
>>>>>>>>>>
>>>>>>>>>> And I get error
>>>>>>>>>> import org.apache.spark.SparkContext import
>>>>>>>>>> org.apache.spark.SparkContext._ import org.apache.spark.SparkConf 
>>>>>>>>>> import
>>>>>>>>>> org.apache.spark.streaming.StreamingContext import
>>>>>>>>>> org.apache.spark.streaming.Seconds import 
>>>>>>>>>> org.apache.spark.sql.SQLContext
>>>>>>>>>> sparkConf: org.apache.spark.SparkConf = 
>>>>>>>>>> org.apache.spark.SparkConf@2e5779a
>>>>>>>>>> import org.apache.spark.streaming.kafka._ ssc:
>>>>>>>>>> org.apache.spark.streaming.StreamingContext =
>>>>>>>>>> org.apache.spark.streaming.StreamingContext@48621ee1 topicMap:
>>>>>>>>>> scala.collection.immutable.Map[String,Int] = Map(incoming -> 1) 
>>>>>>>>>> record:
>>>>>>>>>> org.apache.spark.streaming.dstream.DStream[String] =
>>>>>>>>>> org.apache.spark.streaming.dstream.MappedDStream@6290e75e
>>>>>>>>>> defined class CELL_KPIS data:
>>>>>>>>>> org.apache.spark.streaming.dstream.DStream[CELL_KPIS] =
>>>>>>>>>> org.apache.spark.streaming.dstream.MappedDStream@4bda38c3
>>>>>>>>>>
>>>>>>>>>> <console>:55: error: value registerTempTable is not a member of
>>>>>>>>>> org.apache.spark.rdd.RDD[CELL_KPIS] 
>>>>>>>>>> accessLogs.registerTempTable("RAS")
>>>>>>>>>>
>>>>>>>>>> *My configuration for Zeppelin*
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>> export MASTER=spark://localhost:7077
>>>>>>>>>> export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_05
>>>>>>>>>> export ZEPPELIN_PORT=9090
>>>>>>>>>> export ZEPPELIN_SPARK_CONCURRENTSQL=false
>>>>>>>>>> export ZEPPELIN_SPARK_USEHIVECONTEXT=false
>>>>>>>>>> #'export MASTER=local[*]
>>>>>>>>>> export SPARK_HOME=/home/anauser/spark-1.3/spark-1.3.0-bin-cdh4
>>>>>>>>>>
>>>>>>>>>> *Interpreter configuration for spark *
>>>>>>>>>>
>>>>>>>>>> "2AW247KM7": { "id": "2AW247KM7", "name": "spark", "group":
>>>>>>>>>> "spark", "properties": { "spark.cores.max": "", "spark.yarn.jar": "",
>>>>>>>>>> "master": "local[*]", "zeppelin.spark.maxResult": "1000",
>>>>>>>>>> "zeppelin.dep.localrepo": "local-repo", "spark.app.name":
>>>>>>>>>> "APP3", "spark.executor.memory": "5G", 
>>>>>>>>>> "zeppelin.spark.useHiveContext":
>>>>>>>>>> "false", "spark.driver.allowMultipleContexts": "true", "args": "",
>>>>>>>>>> "spark.home": "/home/anauser/spark-1.3/spark-1.3.0-bin-cdh4",
>>>>>>>>>> "zeppelin.spark.concurrentSQL": "true", "zeppelin.pyspark.python": 
>>>>>>>>>> "python"
>>>>>>>>>> }, "interpreterGroup": [ { "class":
>>>>>>>>>> "org.apache.zeppelin.spark.SparkInterpreter", "name": "spark" }, { 
>>>>>>>>>> "class":
>>>>>>>>>> "org.apache.zeppelin.spark.PySparkInterpreter", "name": "pyspark" }, 
>>>>>>>>>> {
>>>>>>>>>> "class": "org.apache.zeppelin.spark.SparkSqlInterpreter", "name": 
>>>>>>>>>> "sql" },
>>>>>>>>>> { "class": "org.apache.zeppelin.spark.DepInterpreter", "name": "dep" 
>>>>>>>>>> } ],
>>>>>>>>>> "option": { "remote": true } }
>>>>>>>>>> Is there any problem in my code or setup ?
>>>>>>>>>> Any help very much appreciated.
>>>>>>>>>>
>>>>>>>>>
>>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>

Reply via email to