I said, “equivalent of 273degC of energy”

 

Meant to use Kelvin.

Correction, make that ~295degsK; room temp is ~22degC, 0C=273K, plus 22 = 295K.

-mi

 

From: MarkI-ZeroPoint [mailto:zeropo...@charter.net] 
Sent: Monday, December 29, 2014 7:54 PM
To: vortex-l@eskimo.com
Subject: [Vo]:FYI: Strong light–matter coupling in two-dimensional atomic 
crystals

 

FYI:

 

Article being referenced is at the bottom, however, I wanted to toss something 
out to The Collective first…

 

One of the things that caught my eye in the article is the ‘room temperature’ 
condition… 

 

As we all know, atoms at room temp are vibrating like crazy since they contain 
the equivalent of 273degC of energy above their lowest state.  Thus, ‘coherent’ 
states in condensed matter above absolute zero is almost never seen.  The 
article’s experiment was done in material at room temp, so the observed 
behavior is a bit of a surprise.  Perhaps what they have not yet thought about 
is that the ‘microcavities’ have no temperature, as I will explain below.

 

This ties in with a point I tried to explain to Dr. Storms, and although I 
think he realizes my point had merit, he glossed right over it and went off on 
a different tangent.  This was in a vortex discussion about 9 to 12 months ago. 
 The point is this:

 

The ‘temperature’ inside a ‘void’ in a crystal lattice is most likely that of 
the vacuum of space; i.e, absolute zero, or very close to it.  Because, 
temperature is nothing more than excess energy imparted to atoms from 
neighboring atoms; atoms have temperature; space/vacuum does not.  Without 
atoms (physical matter), you have no temperature.  In a lattice void, if it is 
large enough (whatever that dimension is), there is NO ‘temperature’ inside 
since the void contains no atoms.  If an atom diffuses into that void, it 
enters with whatever energy it had when it entered, so it has a temperature.  
At this time, I have not heard any discussion as to whether the atoms which 
make up the walls of the void shed IR photons which could get absorbed by an 
atom in the void and increase its temperature, however, would that atom want to 
immediately shed that photon to get back to its lowest energy level???  So 
voids in crystals likely provide an ideal environment for the formation of BECs.

 

-mark iverson

 

ARTICLE BEING REFERENCED

 

Strong light–matter coupling in two-dimensional atomic crystals

http://www.nature.com/nphoton/journal/v9/n1/full/nphoton.2014.304.html

 

Abstract

“Two-dimensional atomic crystals of graphene, as well as transition-metal 
dichalcogenides, have emerged as a class of materials that demonstrate strong 
interaction with light. This interaction can be further controlled by embedding 
such materials into optical microcavities. When the interaction rate is 
engineered to be faster than dissipation from the light and matter entities, 
one reaches the ‘strong coupling’ regime. This results in the formation of 
half-light, half-matter bosonic quasiparticles called microcavity polaritons. 
Here, we report evidence of strong light–matter coupling and the formation of 
microcavity polaritons in a two-dimensional atomic crystal of molybdenum 
disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. 
A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and 
photoluminescence spectra due to coupling between the two-dimensional excitons 
and the cavity photons. Realizing strong coupling at room temperature in 
two-dimensional materials that offer a disorder-free potential landscape 
provides an attractive route for the development of practical polaritonic 
devices.”

 

Reply via email to