According to Jack, the reaction did not happen in the fuel, but in the
insolating layer. The fuel composition does not matter. IMHP, what matters
is the exact nature of the heater current.

On Tue, Mar 17, 2015 at 4:38 PM, Robert Ellefson <vortex-h...@e2ke.com>
wrote:

> Jack,
>
>
>
> Fantastic!  I’m really stoked to hear of your progress.  I think your
> powder recipe sounds very interesting, and I would love to know more about
> the details of the reactants.  It sounds like you’ve come up with a mixture
> which may contain one or more key ingredients not yet identified as being
> of primary significance to the high-gain modes of these systems.
>
>
>
> If I may fire away:
>
> What size Fe2O3 and TiH2 grains were present?
>
> Is this mixture generally not hygroscopic, and therefore is curing the
> reactor’s sealant a simple matter as compared to LAH?
> Are you tumbling or milling these reactants, or performing any other
> notable processing steps, prior to putting them into the reactors?
>
>
>
> Thanks for sharing, and keep up the great work!
>
>
>
> -Bob
>
>
>
>
>
> *From:* Jack Cole [mailto:jcol...@gmail.com]
> *Sent:* Tuesday, March 17, 2015 1:08 PM
> *To:* vortex-l@eskimo.com
>
> *Subject:* Re: [Vo]:melted alumina tube
>
>
>
> Bob,
>
>
>
> The input power was ~260W.  I don't know what the R value of the
> insulation is.  I had the cell surrounded by high purity alumina powder and
> covered with a thin sheet of ceramic insulation.  I used standard 120V AC
> 60hz with a triac type dimmer switch (chops the waves starting at V=0).
> I'll have to check with the manufacturer to see what the remaining 5% of
> the tube is.  The heating element was Kanthal A1.  It's strange that the
> heating element was able to completely melt at points.  In the past, it has
> always failed before melting.
>
>
>
> I was using INCO type 255 nickel, TiH2, LiOh, KOH, aluminum powder, and
> Fe2O3.  Good idea on the small amount of fuel which should cause some
> localized melting.
>
>
>
> The fact that the fuel was a small diameter cylinder seems to suggest that
> it was fully expanded in the tube and shrunk down.
>
>
>
> Jack
>
>
>
>
>
> On Tue, Mar 17, 2015 at 2:02 PM, Bob Cook <frobertc...@hotmail.com> wrote:
>
> Jack--
>
>
>
> It looks like you had a pretty good reaction.
>
>
>
> What was the input power?  What is the R value of the insulation on the
> outside of the electric coils?  What was the nature of the electrical
> input--frequency etc?  And what is the electrical heating element
> material?   If you have an acetylene torch, see if you can melt a piece of
> the tube that melted.
>
>
>
> The tube may have had glass fibers incorporated in order to improve
> strength.  You indicated it was 95% pure.  What was the other 5%?
>
>
>
> What was you fuel mixture?  You may want to try a small fuel loading and
> see if the same intense reaction happens--all else the same.
>
>
>
> Try the test with a iron core instead of a fuel load and determine if
> there is an apparent magnetic field which would hold the iron core in
> position when direct current is applied to the heating coil.  An
> alternating current would of course change the magnetic field and may
> make for null reaction conditions.
>
>
>
>  Try 2 or 3 t/c's if you can--one inside and two outside to get a measure
> of the temperature gradient along the tube.  Also another easy way to
> determine temperatures is the use of thermal sticks on accessible
> surfaces.  Welders use these to determine preheating temperatures.  They
> may provide a cheap temperature measure for you.
>
>
>
> Keep it shielded--good luck.
>
>
>
> Bob
>
> ----- Original Message -----
>
> *From:* Jack Cole <jcol...@gmail.com>
>
> *To:* vortex-l@eskimo.com
>
> *Sent:* Tuesday, March 17, 2015 9:39 AM
>
> *Subject:* Re: [Vo]:melted alumina tube
>
>
>
> To add a couple of more details.  The agglomerated piece of material is
> extremely hard.  I tried to break it off with pliers, but it seemed like it
> would take more force than to break the entire cell.  The resistance wire
> is extremely difficult to separate from the cell. I plan to open the cell
> with a diamond blade later today to see if more can be learned about what
> took place (e.g., evidence of melting on the inside of tube).  I was able
> to get one piece of the resistance wire pried from the tube.  There were
> indentations in the cell.
>
>
>
> As a follow-up experiment, I need to run it without the fuel to the same
> power levels to see if the same effects occur.
>
>
>
> On Tue, Mar 17, 2015 at 9:42 AM, Jack Cole <jcol...@gmail.com> wrote:
>
> I had an interesting experiment yesterday.  This was my first time using a
> triac to regulate input power and sealing the tube with a compression
> fitting.  Unfortunately, my thermocouple failed.
>
>
>
> Take a look at the alumina tube and the evidence for melting.  The furnace
> sealant which I coated it with completely melted and agglomerated to the
> bottom of the cell (also appears to be mixed with melted alumina).
>
>
>
>
> http://www.lenr-coldfusion.com/wp-content/uploads/2015/03/IMG_20150317_084823_361.jpg
>
>
>
> The tube was purchased from China and is purportedly 95% pure.  It was
> supposed to have a continuous operating temperature of 1500C.
>
>
>
> Any opinions?
>
>
>
> Jack
>
>
>
>
>
>
>
>
>

Reply via email to