Dear Ed. I would ask you to not think in my place, I really don't like it.It is typical for dictatures and I had enough from it starting with :"Der Fuhrer denkt fur uns alle" and ending with Ceausescu's omniscience. I have the right to think independently. Citing you: *you are assuming that D+Pd involves a different mechanism, a different NAE, and different nuclear products. * Clearly the products of reaction are different for Pd and Ni H simply because the reactants are different. I have NOT told that the mechanism of reaction are different. A question for you- a crack however beautiful is inherently very asymmetric do you think a crack nanometers broad but microns or even millimeters long is equally active along its entire lengths? Isn't it more plausible that inside this labyrinthic formation there are some even more preferential short areas where the activity is focused? And are you convinced that thse short areas are so different from a nanostructure? Couldn't be the things a bit more complicated but actually more unitary- as you otherwise also suggest?
I think it is not possible to decide now sitting at our PC's if Nature uses only one soltion or more for creating excess energy. It is more useful to find new ways to force Nature to give us what we need and want and not care so much if she is whining a bit for that. Peter On Fri, Aug 23, 2013 at 6:16 PM, Edmund Storms <stor...@ix.netcom.com>wrote: > > On Aug 23, 2013, at 9:03 AM, Peter Gluck wrote: > > Dear Bob, > > Thank you for the idea of cracks' aesthetics! I know it well, I think > you have remarked the second Motto by Leonard Cohen based > on this idea.. > It happens that very early in my professional career I learned about the > beauty and variety of cracks -when working at the Civil Engineering > Faculy of the Timisoara- Polytechnics, Chair of Concrete. It is a world of > cracks in concrete see e.g. > http://indecorativeconcrete.com/idcn/wp-content/uploads/2012/02/Why-Concrete-Cracks.pdf > Mistery and beauty are different from function. Let's admit the possible > role > cracks in Pd in the FPCell, is this something good for the results? > However Paintelli's process is based on very smart and beautiful > nanostructures more sophisticated and educated as cracks, and LENR+ uses > the high art of nanoplasmonics. > > > How do you know this Peter? Besides, you are assuming that D+Pd involves > a different mechanism, a different NAE, and different nuclear products. > Consequently, the number of miracles is squared rather than reduced. Do you > really want to go down that path? What happens the effect occurs using Ti? > Does this involve an additional method and mechanism? What how is tritium > formed? Is this reaction different in Ni compared to Pd? > > I believe the phenomenon is so rare and unusual that only one condition > and mechanism would be able to cause it. You take the opposite view, that > every material and isotope requires a different method and NAE. This gives > people a choice. I wonder how the vote would go? > > Ed > > > Peter > > , > > > On Fri, Aug 23, 2013 at 5:05 PM, Bob Higgins <rj.bob.higg...@gmail.com>wrote: > >> Recently, Peter published in his blog his reasons for hoping that the NAE >> aren’t cracks. After considering it, I believe he misses the uniqueness, >> durability, and beauty of the cracks that are being considered.**** >> >> ** ** >> >> To the uniqueness point… Consider that a crack is different than just >> two surfaces in close proximity. A crack is like a horn with a throat of >> minimum gap: the lattice spacing. Imagine the throat at x=0 with the crack >> surface spacing widening as x increases. The crack provides a unique >> environment in its smallest regions. Near x=0, the environment for a >> hydron asymptotically approaches that of the lattice. In this region, >> electron orbitals extend across or at least into the crack. Perhaps in >> this near-lattice spacing there is only room for an H+ ion (the case for >> Ni, but for Pd there is room at the lattice spacing for a neutral monatomic >> hydron). As x increases, the crack surface spacing (the gap) increases >> allowing room for neutral monatomic hydrons. At greater x, the crack >> spacing would support neutral H2 molecules, and beyond this, the crack is >> probably uninteresting. This unique gradient of hydron boundary conditions >> always exists in the crack near it throat (near x=0), even if the crack >> were to begin zipping itself open.**** >> >> ** ** >> >> To the durability point… In my past I had occasion to work with MEMS >> structures. When I first saw MEMS cantilever beams being used for switches >> and other functions, my first thought was, “Those are going to break!” >> What I learned was that a structure’s strength is inversely proportional to >> its size. So a building scaled twice as large will be half as strong. >> This is why you can drop an ant from as high as you wish and he will hit >> the ground running. Compare a 3 meter diving board (cantilever) to a 3 >> micron cantilever – the 3 micron cantilever will be a million times more >> robust. The cracks being considered for NAE are nanoscale cracks, but our >> natural experience is with cracks having dimensions of ~1cm. A 10nm crack, >> will be a million times more mechanically robust than a 1cm crack. At the >> nanoscale, the two split apart surfaces will be very stiff and behind the >> throat of the crack (x<0) there will be compression forces trying to >> restore the crack to its closed position. The surfaces may also experience >> a Casimir closing force. A nanoscale crack will have strong forces trying >> to heal itself.**** >> >> **** >> >> If nanocracks can heal, then how would the nanocrack form in the first >> place and what could keep the surfaces apart? I believe a wedge of atom(s) >> or molecule(s) is needed in the gap to keep the crack open, and perhaps to >> form it in the first place. That is why I am using nanoparticles that will >> alloy with Ni and then I am oxidizing the structure. I use iron oxide >> nanoparticles. I put down the oxide nanoparticles disposed all across the >> Ni micro-powder surface, reduce (or partly reduce) the surface so the iron >> nanoparticles can alloy with the Ni, and then go back and strongly oxidize >> the metals. When the iron oxidizes, it grows in volume and I hypothesize >> that it will wedge open a nanocrack. If the iron is then partly reduced it >> becomes an H2 splitting catalyst, right at the site of the crack.**** >> >> ** ** >> >> What a beautiful structure I imagine that to be – a nanocrack with a >> sweep of hydron boundary conditions with an H2 splitting catalyst at its >> mouth.**** >> >> ** ** >> >> Bob**** >> > > > > -- > Dr. Peter Gluck > Cluj, Romania > http://egooutpeters.blogspot.com > > > -- Dr. Peter Gluck Cluj, Romania http://egooutpeters.blogspot.com