*There is good reason to believe that magnetism is the prime mover in LENR.
Under this speculative paradigm, it is interesting to consider the options
and consequences of this conjecture. In such a paradigm, any technology
that is friendly to magnetism would be good for LENR, and conversely, a
technology that undercuts the strength of magnetism is bad.*



*The Pd/D wet technology is more unfriendly to magnetism than nickel
because it makes magnetism more difficult to maintain. Firstly as a general
technological principle, an isotope must have a nuclear spin of zero to
enable the LENR reaction. There is much experimental evidence to support
this conjecture. For an explanation see below.   In this respect, palladium
has a nuclear spin profile that is about 78% effective. 105Pd has a
non-zero spin and is 22% of the isotopic contents of run of the mill
palladium. *



*On the other hand, Nickel is much more efficient in terms of supporting
magnetism. 61Ni has a non-zero nuclear spin, but that isotope is only 1.14%
of the isotopic content of Nickel.*



*Palladium is paramagnetic and Nickel is ferromagnetic. So nickel is more
desirable than palladium as a magnetic reaction catalyst.*


*In more detail, this thinking is underpinned by a speculative LENR
reaction rule that is interesting to explore. That rule is that the LENR
reaction must occur among atomic ions that have zero nuclear spin.*

 *In explanation, Nuclear magnetic resonance (NMR) is a physical phenomenon
in which nuclei in a magnetic field absorb and re-emit electromagnetic
radiation. This energy is at a specific resonance frequency which depends
on the strength of the magnetic field and the magnetic properties of the
isotope of the atoms; in practical applications, the frequency is similar
to old style VHF and UHF television broadcasts (60–1000 MHz). NMR allows
the observation of specific quantum mechanical magnetic properties of the
atomic nucleus. *



*All isotopes that contain an odd number of protons and/or of neutrons have
an intrinsic magnetic moment and angular momentum, in other words a nonzero
spin, while all nuclides with even numbers of both have a total spin of
zero. The most commonly studied NMR active nuclei are 1H and 13C, although
nuclei from isotopes of many other elements (e.g. 2H, 6Li, 10B, 11B, 14N,
15N, 17O, 19F, 23Na, 29Si, 31P, 35Cl, 113Cd, 129Xe, 195Pt) have been
studied by high-field NMR spectroscopy as well.*



*It is now known that Ni61 does not participate in the LENR reaction. Ni61
is a NMR active isotope. When a magnetic field is applied to an NMR active
isotope, the magnetic energy imparted to the nucleus is dissipated by
induced nuclear vibrational energy which is radiated away as rf energy. The
non-zero spin of the the nucleus shields the nucleus from the external
magnetic field not allowing that field to penetrate into it. External
magnetic fields catalyze changes in the protons and neutrons in the nucleus
as well as enabling accelerated quantum mechanical tunneling. If this
external magnetic field is shielded by NMR activity, LENR transmutation of
the protons and neutrons in the nucleus is made more difficult.*



*Therefore, during the course of an extended LENR reaction cycle, isotope
depletion will tend to favor the enrichment and buildup of NMR active
elements.*



*Hydrogen with non-zero spin will not participate in the LENR reaction
whereas cooper pairs of protons will. Expect LENR reactions centered on
pairs of protons with zero spin.*



*Also, as the LERN reaction matures and more NMR active isotopes
accumulate, the LENR reactor will put out increasing levels or rf radiation
derived from the nuclear vibrations of the NMR isotope.*





*This NMR thinking also applies to the nature of the various isotopes of
hydrogen.*



*Molecular hydrogen occurs in two isomeric forms, one with its two proton
spins aligned parallel (orthohydrogen), the other with its two proton spins
aligned antiparallel (parahydrogen). At room temperature and thermal
equilibrium, hydrogen consists of approximately 75% orthohydrogen and 25%
parahydrogen.*





*Orthohydrogen hydrogen has non zero spin, this is bad for Ni/H LENR
because the non zero spin wastes magnetic energy by producing RF radiation.
Parahydrogen hydrogen has zero spin. This is good for Ni/H LENR because
this type of hydrogen is magnetically inactive.*





*This is a way to increase parahydrogen hydrogen by using a noble metal
catalyst.*



*see*



*Catalytic process for ortho-para hydrogen conversion*



*http://www.google.com/patents/US3383176
<http://www.google.com/patents/US3383176>*



*Could this metallic ruthenium and certain ruthenium alloys be Rossi's
secret sauce?*



*The first step in the hydrogen doublet fusion process is the formation of
one or more atoms of 2He.*



*Helium-2 or 2He, also known as a diproton, is an extremely unstable
isotope of helium that consists of two protons without any neutrons.
According to theoretical calculations it would have been much more stable
(although still beta decaying to deuterium) had the strong force been 2%
greater. Its instability is due to spin-spin interactions in the nuclear
force, and the Pauli exclusion principle, which forces the two protons to
have anti-aligned spins and gives the diproton a negative binding energy.*



*By the way, the ash produced by the LENR reaction will have a non-zero
nuclear spin such as lithium, boron, and beryllium. This is due to the fact
that the ash is at the end of the LENR reaction chain that terminates with
an isotope featuring a non-zero nuclear spin.*



*Furthermore, all the stable isotopes of copper have a non-zero nuclear
spin. This may be way these isotopes are found in the ash assay of Rossi’s
reactor.*



*One last correlation remains.*



*It seems that the popular wet LENR catalyst acts like a superconductor for
protons where protons pair up into a cooper pair.*



*See*



*http://arxiv.org/pdf/0807.1386.pdf <http://arxiv.org/pdf/0807.1386.pdf>*



*This work emphasizes that atoms in the crystal-field of KHCO3 are not
individual particles possessing properties in their own right. They merge
into macroscopic states and exhibit all features of quantum mechanics:
non-locality, entanglement, spin-symmetry, superposition and interferences.
There is every reason to suppose that similar quantum effects should occur
in many hydrogen bonded crystals undergoing structural phase transitions.*



*I understand spin-symmetry to mean a zero spin.*



*This catalyst provides a proton dimer of zero spin to the wet LENR
reaction. This is the reason why this catalyst enhances electrolytic LENR
in water. *

On Sat, Oct 18, 2014 at 6:38 PM, Bob Cook <frobertc...@hotmail.com> wrote:

>  I would disagree with the spins reported by Axil for D and a Proton.  D
> is +1 and the Proton is +1/2 in non excited states or ground states.  The
> neutron also has a +1/2 spin. The proton and neutron spins seem to add to
> make up the +1 spin of the D.
>
> Bob
>
> ----- Original Message -----
> *From:* Jones Beene <jone...@pacbell.net>
> *To:* vortex-l@eskimo.com
> *Sent:* Saturday, October 18, 2014 12:17 PM
> *Subject:* RE: [Vo]:Mizuno, Rossi & copper transmutation
>
>  *From:* Axil
>
>
>
> it is highly preferable to use deuterium, as opposed to hydrogen.
>
>
>
> I disagree.
>
>
>
> Deuterium has a non zero spin whereas hydrogen has a zero spin which is
> required in low powered LENR reactions.
>
>
>
>
>
> Says who? What is your evidence?
>
>
>
>

Reply via email to