Ni59 is not stable. I don't see it mentioned in the Cook report. You have a
case for Pd105 but this non zero spin conjecture is not a hard cast
rule. Non zero spin is just unfavorable in the LENR reaction based on the
strength of the magnetic field producing the reaction. Non zero spin just
discourages the LENR reaction, not prevents it. A strong enough magnetic
field will transmute anything no matter what the spin of the nucleus is.

On Sat, Oct 18, 2014 at 7:29 PM, Bob Cook <frobertc...@hotmail.com> wrote:

>  Axil--
>
> Take a look at the Norman Cook discussion that you just posted as to the
> depletion of the various isotopes of Ni in LENR testing that Cook
>  evaluates.
>
> IT INCLUDES DEPLETION OF ODD NUCLEON  ISOTOPES WITH NET SPIN  (NI-59 WITH
> -3/2) AS WELL AS EVEN NUCLEON  ISOTOPES WITH 0 SPIN.   ONLY NI-61 (ODD
> NUMBER OF NUCLEONS) DOES NOT SEEM TO REACT MUCH.
>
> Bob Cook
>
> ----- Original Message -----
> *From:* Axil Axil <janap...@gmail.com>
> *To:* vortex-l <vortex-l@eskimo.com>
> *Sent:* Saturday, October 18, 2014 4:11 PM
> *Subject:* Re: [Vo]:Mizuno, Rossi & copper transmutation
>
>  *There is good reason to believe that magnetism is the prime mover in
> LENR. Under this speculative paradigm, it is interesting to consider the
> options and consequences of this conjecture. In such a paradigm, any
> technology that is friendly to magnetism would be good for LENR, and
> conversely, a technology that undercuts the strength of magnetism is bad.*
>
>
>
> *The Pd/D wet technology is more unfriendly to magnetism than nickel
> because it makes magnetism more difficult to maintain. Firstly as a general
> technological principle, an isotope must have a nuclear spin of zero to
> enable the LENR reaction. There is much experimental evidence to support
> this conjecture. For an explanation see below.   In this respect, palladium
> has a nuclear spin profile that is about 78% effective. 105Pd has a
> non-zero spin and is 22% of the isotopic contents of run of the mill
> palladium. *
>
>
>
> *On the other hand, Nickel is much more efficient in terms of supporting
> magnetism. 61Ni has a non-zero nuclear spin, but that isotope is only 1.14%
> of the isotopic content of Nickel.*
>
>
>
> *Palladium is paramagnetic and Nickel is ferromagnetic. So nickel is more
> desirable than palladium as a magnetic reaction catalyst.*
>
>
> *In more detail, this thinking is underpinned by a speculative LENR
> reaction rule that is interesting to explore. That rule is that the LENR
> reaction must occur among atomic ions that have zero nuclear spin.*
>
>  *In explanation, Nuclear magnetic resonance (NMR) is a physical
> phenomenon in which nuclei in a magnetic field absorb and re-emit
> electromagnetic radiation. This energy is at a specific resonance frequency
> which depends on the strength of the magnetic field and the magnetic
> properties of the isotope of the atoms; in practical applications, the
> frequency is similar to old style VHF and UHF television broadcasts
> (60–1000 MHz). NMR allows the observation of specific quantum mechanical
> magnetic properties of the atomic nucleus. *
>
>
>
> *All isotopes that contain an odd number of protons and/or of neutrons
> have an intrinsic magnetic moment and angular momentum, in other words a
> nonzero spin, while all nuclides with even numbers of both have a total
> spin of zero. The most commonly studied NMR active nuclei are 1H and 13C,
> although nuclei from isotopes of many other elements (e.g. 2H, 6Li, 10B,
> 11B, 14N, 15N, 17O, 19F, 23Na, 29Si, 31P, 35Cl, 113Cd, 129Xe, 195Pt) have
> been studied by high-field NMR spectroscopy as well.*
>
>
>
> *It is now known that Ni61 does not participate in the LENR reaction. Ni61
> is a NMR active isotope. When a magnetic field is applied to an NMR active
> isotope, the magnetic energy imparted to the nucleus is dissipated by
> induced nuclear vibrational energy which is radiated away as rf energy. The
> non-zero spin of the the nucleus shields the nucleus from the external
> magnetic field not allowing that field to penetrate into it. External
> magnetic fields catalyze changes in the protons and neutrons in the nucleus
> as well as enabling accelerated quantum mechanical tunneling. If this
> external magnetic field is shielded by NMR activity, LENR transmutation of
> the protons and neutrons in the nucleus is made more difficult.*
>
>
>
> *Therefore, during the course of an extended LENR reaction cycle, isotope
> depletion will tend to favor the enrichment and buildup of NMR active
> elements.*
>
>
>
> *Hydrogen with non-zero spin will not participate in the LENR reaction
> whereas cooper pairs of protons will. Expect LENR reactions centered on
> pairs of protons with zero spin.*
>
>
>
> *Also, as the LERN reaction matures and more NMR active isotopes
> accumulate, the LENR reactor will put out increasing levels or rf radiation
> derived from the nuclear vibrations of the NMR isotope.*
>
>
>
>
>
> *This NMR thinking also applies to the nature of the various isotopes of
> hydrogen.*
>
>
>
> *Molecular hydrogen occurs in two isomeric forms, one with its two proton
> spins aligned parallel (orthohydrogen), the other with its two proton spins
> aligned antiparallel (parahydrogen). At room temperature and thermal
> equilibrium, hydrogen consists of approximately 75% orthohydrogen and 25%
> parahydrogen.*
>
>
>
>
>
> *Orthohydrogen hydrogen has non zero spin, this is bad for Ni/H LENR
> because the non zero spin wastes magnetic energy by producing RF radiation.
> Parahydrogen hydrogen has zero spin. This is good for Ni/H LENR because
> this type of hydrogen is magnetically inactive.*
>
>
>
>
>
> *This is a way to increase parahydrogen hydrogen by using a noble metal
> catalyst.*
>
>
>
> *see*
>
>
>
> *Catalytic process for ortho-para hydrogen conversion*
>
>
>
> *http://www.google.com/patents/US3383176
> <http://www.google.com/patents/US3383176>*
>
>
>
> *Could this metallic ruthenium and certain ruthenium alloys be Rossi's
> secret sauce?*
>
>
>
> *The first step in the hydrogen doublet fusion process is the formation of
> one or more atoms of 2He.*
>
>
>
> *Helium-2 or 2He, also known as a diproton, is an extremely unstable
> isotope of helium that consists of two protons without any neutrons.
> According to theoretical calculations it would have been much more stable
> (although still beta decaying to deuterium) had the strong force been 2%
> greater. Its instability is due to spin-spin interactions in the nuclear
> force, and the Pauli exclusion principle, which forces the two protons to
> have anti-aligned spins and gives the diproton a negative binding energy.*
>
>
>
> *By the way, the ash produced by the LENR reaction will have a non-zero
> nuclear spin such as lithium, boron, and beryllium. This is due to the fact
> that the ash is at the end of the LENR reaction chain that terminates with
> an isotope featuring a non-zero nuclear spin.*
>
>
>
> *Furthermore, all the stable isotopes of copper have a non-zero nuclear
> spin. This may be way these isotopes are found in the ash assay of Rossi’s
> reactor.*
>
>
>
> *One last correlation remains.*
>
>
>
> *It seems that the popular wet LENR catalyst acts like a superconductor
> for protons where protons pair up into a cooper pair.*
>
>
>
> *See*
>
>
>
> *http://arxiv.org/pdf/0807.1386.pdf <http://arxiv.org/pdf/0807.1386.pdf>*
>
>
>
> *This work emphasizes that atoms in the crystal-field of KHCO3 are not
> individual particles possessing properties in their own right. They merge
> into macroscopic states and exhibit all features of quantum mechanics:
> non-locality, entanglement, spin-symmetry, superposition and interferences.
> There is every reason to suppose that similar quantum effects should occur
> in many hydrogen bonded crystals undergoing structural phase transitions.*
>
>
>
> *I understand spin-symmetry to mean a zero spin.*
>
>
>
> *This catalyst provides a proton dimer of zero spin to the wet LENR
> reaction. This is the reason why this catalyst enhances electrolytic LENR
> in water. *
>
> On Sat, Oct 18, 2014 at 6:38 PM, Bob Cook <frobertc...@hotmail.com> wrote:
>
>>  I would disagree with the spins reported by Axil for D and a Proton.  D
>> is +1 and the Proton is +1/2 in non excited states or ground states.  The
>> neutron also has a +1/2 spin. The proton and neutron spins seem to add to
>> make up the +1 spin of the D.
>>
>> Bob
>>
>> ----- Original Message -----
>> *From:* Jones Beene <jone...@pacbell.net>
>> *To:* vortex-l@eskimo.com
>>  *Sent:* Saturday, October 18, 2014 12:17 PM
>> *Subject:* RE: [Vo]:Mizuno, Rossi & copper transmutation
>>
>>  *From:* Axil
>>
>>
>>
>> it is highly preferable to use deuterium, as opposed to hydrogen.
>>
>>
>>
>> I disagree.
>>
>>
>>
>> Deuterium has a non zero spin whereas hydrogen has a zero spin which is
>> required in low powered LENR reactions.
>>
>>
>>
>>
>>
>> Says who? What is your evidence?
>>
>>
>>
>>
>

Reply via email to