I think I can write an abbreviated version, but there would only be a few
people in the world who would both believe me and understand why it would
work.

On Mon, Aug 2, 2010 at 8:53 AM, Jim Bromer <jimbro...@gmail.com> wrote:

> I can write an algorithm that is capable of describing ('reaching') every
> possible irrational number - given infinite resources.  The infinite is not
> a number-like object, it is an active form of incrementation or
> concatenation.  So I can write an algorithm that can write *every* finite
> state of *every* possible number.  However, it would take another
> algorithm to 'prove' it.  Given an irrational number, this other algorithm
> could find the infinite incrementation for every digit of the given number.
> Each possible number (including the incrementation of those numbers that
> cannot be represented in truncated form) is embedded within a single
> infinite infinite incrementation of digits that is produced by the
> algorithm, so the second algorithm would have to calculate where you would
> find each digit of the given irrational number by increment.  But the thing
> is, both functions would be computable and provable.  (I haven't actually
> figured the second algorithm out yet, but it is not a difficult problem.)
>
> This means that the Trans-Infinite Is Computable.  But don't tell anyone
> about this, it's a secret.
>
>



-------------------------------------------
agi
Archives: https://www.listbox.com/member/archive/303/=now
RSS Feed: https://www.listbox.com/member/archive/rss/303/
Modify Your Subscription: 
https://www.listbox.com/member/?member_id=8660244&id_secret=8660244-6e7fb59c
Powered by Listbox: http://www.listbox.com

Reply via email to