Hi,
I was thinking about this earlier when I started writing the patch and
then I forgot about it again. I haven't been able to figure out when the
code will be executed. ByteBuffer is implemented in such a way that
only the JDK can extend it and as far as I can tell you can only create
3 types of ByteBuffers (Direct, Mapped and Heap), all of which will be
handled by the more efficient calls above.
That said just to make the code a bit safer from OOM it is probably best
to update the default method and all current implementations which all
use the same pattern.
A reasonable solution should be the following code
byte[] b = new byte[(buffer.remaining() < 4096)
? buffer.remaining() : 4096];
while (buffer.hasRemaining()) {
int length = (buffer.remaining() < b.length)
? buffer.remaining() : b.length;
buffer.get(b, 0, length);
update(b, 0, length);
}
Xueming, do you have any further comment?
Regards,
Staffan
On 10/22/2014 03:04 PM, Stanimir Simeonoff wrote:
On Thu, Oct 23, 2014 at 12:10 AM, Bernd Eckenfels
<[email protected] <mailto:[email protected]>> wrote:
Hello,
just a question in the default impl:
+ } else {
+ byte[] b = new byte[rem];
+ buffer.get(b);
+ update(b, 0, b.length);
+ }
would it be a good idea to actually put a ceiling on the size of the
array which is processed at once?
This is an excellent catch.
Should not be too large, probably 4k or so.
Stanimir
Am Tue, 21 Oct 2014 10:28:50 -0700
schrieb Staffan Friberg <[email protected]
<mailto:[email protected]>>:
> Hi Peter,
>
> Thanks for the comments..
> >
> > 217 if (Unsafe.ADDRESS_SIZE == 4) {
> > 218 // On 32 bit platforms read two ints
> > instead of a single 64bit long
> >
> > When you're reading from byte[] using Unsafe (updateBytes), you
> > have the option of reading 64bit values on 64bit platforms. When
> > you're reading from DirectByteBuffer memory
> > (updateDirectByteBuffer), you're only using 32bit reads.
> I will add a comment in the code for this decision. The reason is
> that read a long results in slightly worse performance in this case,
> in updateBytes it is faster. I was able to get it to run slightly
> faster by working directly with the address instead of always adding
> address + off, but this makes things worse in the 32bit case since
> all calculation will now be using long variables. So using the
getInt
> as in the current code feels like the best solution as it
strikes the
> best balance between 32 and 64bit. Below is how updateByteBuffer
> looked with the rewrite I mentioned.
>
>
> ong address = ((DirectBuffer) buffer).address();
> crc = updateDirectByteBuffer(crc, address + pos, address + limit);
>
>
> private static int updateDirectByteBuffer(int crc, long adr,
> long end) {
>
> // Do only byte reads for arrays so short they can't be
> aligned if (end - adr >= 8) {
>
> // align on 8 bytes
> int alignLength = (8 - (int) (adr & 0x7)) & 0x7;
> for (long alignEnd = adr + alignLength; adr < alignEnd;
> adr++) { crc = (crc >>> 8)
> ^ byteTable[(crc ^ UNSAFE.getByte(adr)) &
> 0xFF]; }
>
> if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) {
> crc = Integer.reverseBytes(crc);
> }
>
> // slicing-by-8
> for (; adr < (end - Long.BYTES); adr += Long.BYTES) {
> int firstHalf;
> int secondHalf;
> if (Unsafe.ADDRESS_SIZE == 4) {
> // On 32 bit platforms read two ints instead of
> a single 64bit long firstHalf = UNSAFE.getInt(adr);
> secondHalf = UNSAFE.getInt(adr +
Integer.BYTES);
> } else {
> long value = UNSAFE.getLong(adr);
> if (ByteOrder.nativeOrder() ==
> ByteOrder.LITTLE_ENDIAN) { firstHalf = (int) value;
> secondHalf = (int) (value >>> 32);
> } else { // ByteOrder.BIG_ENDIAN
> firstHalf = (int) (value >>> 32);
> secondHalf = (int) value;
> }
> }
> crc ^= firstHalf;
> if (ByteOrder.nativeOrder() ==
> ByteOrder.LITTLE_ENDIAN) { crc = byteTable7[crc & 0xFF]
> ^ byteTable6[(crc >>> 8) & 0xFF]
> ^ byteTable5[(crc >>> 16) & 0xFF]
> ^ byteTable4[crc >>> 24]
> ^ byteTable3[secondHalf & 0xFF]
> ^ byteTable2[(secondHalf >>> 8) & 0xFF]
> ^ byteTable1[(secondHalf >>> 16) &
0xFF]
> ^ byteTable0[secondHalf >>> 24];
> } else { // ByteOrder.BIG_ENDIAN
> crc = byteTable0[secondHalf & 0xFF]
> ^ byteTable1[(secondHalf >>> 8) & 0xFF]
> ^ byteTable2[(secondHalf >>> 16) &
0xFF]
> ^ byteTable3[secondHalf >>> 24]
> ^ byteTable4[crc & 0xFF]
> ^ byteTable5[(crc >>> 8) & 0xFF]
> ^ byteTable6[(crc >>> 16) & 0xFF]
> ^ byteTable7[crc >>> 24];
> }
> }
>
> if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) {
> crc = Integer.reverseBytes(crc);
> }
> }
>
> // Tail
> for (; adr < end; adr++) {
> crc = (crc >>> 8)
> ^ byteTable[(crc ^ UNSAFE.getByte(adr)) &
0xFF];
> }
>
> return crc;
> }
>
>
> >
> > Also, in updateBytes, the usage of
> > Unsafe.ARRAY_INT_INDEX_SCALE/ARRAY_LONG_INDEX_SCALE to index a
byte
> > array sounds a little scary. To be ultra portable you could check
> > that ARRAY_BYTE_INDEX_SCALE == 1 first and refuse to use
Unsafe for
> > byte arrays if it is not 1. Then use Integer.BYTES/Long.BYTES to
> > manipulate 'offsets' instead. In updateDirectByteBuffer it
would be
> > more appropriate to use Integer.BYTES/Long.BYTES too.
> Good idea. Added a check in the initial if statement and it will get
> automatically optimized away.
>
> > 225 firstHalf = (int) (value &
> > 0xFFFFFFFF); 226 secondHalf = (int) (value
> > >>> 32); 227 } else { // ByteOrder.BIG_ENDIAN
> > 228 firstHalf = (int) (value >>> 32);
> > 229 secondHalf = (int) (value &
> > 0xFFFFFFFF);
> >
> > firstHalf = (int) value; // this is equivalent for line 225
> > secondHalf = (int) value; // this is equivalent for line 229
> Done.
>
> Here is the latest webrev,
> http://cr.openjdk.java.net/~sfriberg/JDK-6321472/webrev.03
<http://cr.openjdk.java.net/%7Esfriberg/JDK-6321472/webrev.03>
>
> Cheers,
> Staffan