On 12/10/2013 10:47 PM, Jason Resch wrote:
On Wed, Dec 11, 2013 at 12:19 AM, meekerdb <meeke...@verizon.net
<mailto:meeke...@verizon.net>> wrote:
On 12/10/2013 9:49 PM, Jason Resch wrote:
On Tue, Dec 10, 2013 at 9:53 PM, meekerdb <meeke...@verizon.net
<mailto:meeke...@verizon.net>> wrote:
On 12/10/2013 5:23 PM, LizR wrote:
On 10 December 2013 09:06, Jason Resch <jasonre...@gmail.com
<mailto:jasonre...@gmail.com>> wrote:
Bell's theorm proves that local hidden variables are impossible
which
leaves only two remaining explanations that explain the EPR paradox:
1. Non-local, faster-than-light, relativity violating effects
2. Measurements have more than one outcome
In light of Bell's theorem, either special relativity is false or
many-world's is true.
Bell realised there was a third explanation involving the relevant laws
of
physics operating in a time symmetric fashion. (Oddly this appears to
be the
hardest one for people to grasp, however.)
Yes, that idea has been popularized by Vic Stenger and by Cramer's
transactional interpretation.
Collapse is still fundamentally real in the transactional interpretation,
it is
just even less clear about when it occurs. The transactional
interpretation is
also non-local, non-deterministic, and postulates new things outside of
standard QM.
I think it's still local, no FTL except via zig-zags like Stenger's.
This table should be updated in that case:
https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics#Comparison_of_interpretations
Hmm. I think the transactional waves are not FTL but in an EPR experiment would relay on
backward-in-time signaling. Not sure why it says TIQ is explicitly non-local?
What are the zig-zags?
By "traveling" back in time and then forward a particle can be at two spacelike separate
events.
Why? Everett showed the Schrodinger equation is sufficient to explain all
observations in QM.
But it's non-local too. If spacelike measurement choices in are made in
repeated
EPR measurements the results can still show correlations violating Bell's
inequality
- in the same world.
Can you explain the experimental setup where this happens?
http://arxiv.org/abs/quant-ph/9810080
The Schrodinger equation has solutions in Hilbert space, which are not
local in
spacetime.
Are you referring to momentum vs. position basis (
http://lesswrong.com/lw/pr/which_basis_is_more_fundamental/ ) or something else?
No, just that a ray in Hilbert space, a state, corresponds to a solution of the SWE over
configuration space (with boundary conditions) which in general is not localized in spacetime.
Is it just so people can sleep soundly at night believing the universe is
small and
that they are unique?
There's also hyperdeterminism in which the experimenters only *thinks*
the can
make independent choices. t'Hooft tries to develop that viewpoint.
Hyper-determinism sounds incompatible with normal determinism, as it seems
to imply
a the deterministic process of an operating mind is forced (against its
will in
some cases), to decide certain choices which would be determined by
something
operating external to that mind.
I think I can use the pigeon hole principle to prove hyper-determinism is
inconsistent with QM. Consider an observer whose mind is represented by a
computer
program running on a computer with a total memory capacity limited to N
bits. Then
have this observer make 2^n + 1 quantum measurements. If hyperdeterminism
is true,
and the results matches what the observer decided to choose, then the
hyper-determistic effects must be repeating an on interval of 2^n or less.
There's nothing in the theory to limit the capacity to local memory, if
hyper-determinism is true, it's true of the universe as a whole.
What if we have two remote locations measuring entangled particles, and whether they
measure the x-spin or y-spin for the i-th particle depends on the i-th binary digit of
Pi at one locations, and the i-th binary digit of Euler's constant at the other
location? How can hyper-determinism force the digits of Pi or e?
?? I think the i-th digit pi and the i-th digit of e are already determined.
Brent
--
You received this message because you are subscribed to the Google Groups
"Everything List" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to everything-list+unsubscr...@googlegroups.com.
To post to this group, send email to everything-list@googlegroups.com.
Visit this group at http://groups.google.com/group/everything-list.
For more options, visit https://groups.google.com/groups/opt_out.