>From previous post: There are four rfMRI runs per subject. LR vs RL refers to the phase encoding direction and 1 and 2 refers to the session each run was acquired in. You should use balanced amounts of RL and LR data ideally, as the phase encoding direction does create some asymmetry in the data. You want to use the MSMAll_hp2000_clean dtseries file, as this file has its cortical areas aligned across subjects. If you wish to concatenate across runs, you should remove the mean image. You could also variance normalize the data with by multiplying by the bias field and dividing by the variance normalization map though these maps would need to be resampled into MSMAll alignment as the currently distributed files are in MSMSulc alignment. This can be done using:
#Create spheres for resampling from MSMSulc to MSMAll on the 32k mesh wb_command -surface-project-unproject ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.L.sphere.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/Native/${Subject}.L.sphere.MSMSulc.native.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/Native/${Subject}.L.sphere.MSMAll.native.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.L.sphere.MSMSulc_MSMAll.32k_fs_LR.surf.gii wb_command -surface-project-unproject ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.R.sphere.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/Native/${Subject}.R.sphere.MSMSulc.native.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/Native/${Subject}.R.sphere.MSMAll.native.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.R.sphere.MSMSulc_MSMAll.32k_fs_LR.surf.gii #Resample Variance Normalization Map wb_command -cifti-resample ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_hp2000_clean_vn.dscalar.nii COLUMN ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_hp2000_clean_vn.dscalar.nii COLUMN ADAP_BARY_AREA ENCLOSING_VOXEL ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean_vn.dscalar.nii -surface-postdilate 30 -nearest -left-spheres ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.L.sphere.MSMSulc_MSMAll.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.L.sphere.32k_fs_LR.surf.gii -left-area-surfs ${StudyFolder}/${Subject}/T1w/fsaverage_LR32k/${Subject}.L.midthickness.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/T1w/fsaverage_LR32k/${Subject}.L.midthickness_MSMAll.32k_fs_LR.surf.gii -right-spheres ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.R.sphere.MSMSulc_MSMAll.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.R.sphere.32k_fs_LR.surf.gii -right-area-surfs ${StudyFolder}/${Subject}/T1w/fsaverage_LR32k/${Subject}.R.midthickness.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/T1w/fsaverage_LR32k/${Subject}.R.midthickness_MSMAll.32k_fs_LR.surf.gii #Resample Bias Field Map wb_command -cifti-resample ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_hp2000_clean_bias.dscalar.nii COLUMN ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_hp2000_clean_bias.dscalar.nii COLUMN ADAP_BARY_AREA ENCLOSING_VOXEL ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean_bias.dscalar.nii -surface-postdilate 30 -nearest -left-spheres ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.L.sphere.MSMSulc_MSMAll.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.L.sphere.32k_fs_LR.surf.gii -left-area-surfs ${StudyFolder}/${Subject}/T1w/fsaverage_LR32k/${Subject}.L.midthickness.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/T1w/fsaverage_LR32k/${Subject}.L.midthickness_MSMAll.32k_fs_LR.surf.gii -right-spheres ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.R.sphere.MSMSulc_MSMAll.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.R.sphere.32k_fs_LR.surf.gii -right-area-surfs ${StudyFolder}/${Subject}/T1w/fsaverage_LR32k/${Subject}.R.midthickness.32k_fs_LR.surf.gii ${StudyFolder}/${Subject}/T1w/fsaverage_LR32k/${Subject}.R.midthickness_MSMAll.32k_fs_LR.surf.gii #Remove spheres from above rm ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.L.sphere.MSMSulc_MSMAll.32k_fs_LR.surf.gii rm ${StudyFolder}/${Subject}/MNINonLinear/fsaverage_LR32k/${Subject}.R.sphere.MSMSulc_MSMAll.32k_fs_LR.surf.gii #Create mean image for demeaning wb_command -cifti-reduce ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean.dtseries.nii MEAN ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean_mean.dscalar.nii #Demean and variance normalize timeseries (and revert bias field correction) wb_command -cifti-math “((TCS - Mean) * Bias) / VN” ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean_nobias_vn.dtseries.nii -var TCS ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean.dtseries.nii -var Mean ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean_mean.dscalar.nii -var Bias ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean_bias.dscalar.nii -var VN ${StudyFolder}/${Subject}/MNINonLinear/Results/${fMRIName}/${fMRIName}_Atlas_MSMAll_hp2000_clean_vn.dscalar.nii Peace, Matt. From: HERACLES PANAGIOTIDES <he...@uw.edu<mailto:he...@uw.edu>> Date: Monday, January 1, 2018 at 6:26 PM To: Matt Glasser <glass...@wustl.edu<mailto:glass...@wustl.edu>> Subject: Re: [HCP-Users] (no subject) Hi Matt and Happy New Year. Is the processing already done and available on the site? If o, what are the processed files called? Thanks, Heracles From: Glasser, Matthew Sent: Sunday, December 31, 2017 9:35 AM To: hcp-users@humanconnectome.org Cc: HERACLES PANAGIOTIDES Subject: Re: [HCP-Users] (no subject) The variance normalization is per timeseries. We prefer to use the _vn files provided by the RestingStateStats pipeline so that this is equalizing the unstructured noise. Peace, Matt. From: HERACLES PANAGIOTIDES <he...@uw.edu> Date: Saturday, December 30, 2017 at 2:05 PM To: Matt Glasser <glass...@wustl.edu> Subject: Re: [HCP-Users] (no subject) Hello Matt, I am getting ready to launch a group analysis of rfMRI files using Matlab. I want to make sure that I am not making any fundamental errors in preprocessing. I would be deeply appreciative, if I could (phone?) consult with you or anyone else, to make sure that I am not making any gross mistakes. At this point, I am following your instructions about mean and and variance normalization before ROI extraction. For example, is this equivalent to a z-score transformation? If so, is this done to the entire 4D volume or to the individual voxel time series? At any rate, these are some of my questions. Thank you for being so kind. Heracles _______________________________________________ HCP-Users mailing list HCP-Users@humanconnectome.org http://lists.humanconnectome.org/mailman/listinfo/hcp-users