[ https://issues.apache.org/jira/browse/SPARK-17709?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15538927#comment-15538927 ]
Ashish Shrowty commented on SPARK-17709: ---------------------------------------- [~dkbiswal] I just went through manual steps of creating the table in Hive (using EMR 5.0.0), inserting data into it, and then querying using spark .. and got the exception .. steps I followed - Step 1 - hive> create external table referencedata.testproduct ( hive> create external table referencedata.testproduct ( > productid int, > name string, > price double, > itemcount int > ) PARTITIONED BY (companyid int) > STORED AS PARQUET > LOCATION 's3://com.birdzi.datalake.test/testtable' > ; Step 2 - Insert data - set hive.exec.dynamic.partition.mode=nonstrict insert into referencedata.testproduct partition(companyid) values(1,"p1",10.0,10,100); insert into referencedata.testproduct partition(companyid) values(2,"p1",12.0,12,100); insert into referencedata.testproduct partition(companyid) values(3,"p3",13.0,12,101); Step 3 - query using spark-shell - val d1 = spark.sql("select * from referencedata.testproduct") val df1 = d1.sample(false,0.5).select("companyid","productid","price").groupBy("companyid","productid").agg(avg("price").as("avgprice")) val df2 = d1.sample(false,0.5).select("companyid","productid","itemcount").groupBy("companyid","productid").agg(avg("itemcount").as("avgitemcount")) df1.join(df2, Seq("companyid","loyaltycardnumber")) .. throws exception - org.apache.spark.sql.AnalysisException: using columns ['companyid,'loyaltycardnumber] can not be resolved given input columns: [companyid, productid, price, avgitemcount] ; at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:40) at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:58) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:174) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:58) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2589) at org.apache.spark.sql.Dataset.join(Dataset.scala:641) at org.apache.spark.sql.Dataset.join(Dataset.scala:614) ... 49 elided > spark 2.0 join - column resolution error > ---------------------------------------- > > Key: SPARK-17709 > URL: https://issues.apache.org/jira/browse/SPARK-17709 > Project: Spark > Issue Type: Bug > Affects Versions: 2.0.0 > Reporter: Ashish Shrowty > Labels: easyfix > > If I try to inner-join two dataframes which originated from the same initial > dataframe that was loaded using spark.sql() call, it results in an error - > // reading from Hive .. the data is stored in Parquet format in Amazon S3 > val d1 = spark.sql("select * from <hivetable>") > val df1 = d1.groupBy("key1","key2") > .agg(avg("totalprice").as("avgtotalprice")) > val df2 = d1.groupBy("key1","key2") > .agg(avg("itemcount").as("avgqty")) > df1.join(df2, Seq("key1","key2")) gives error - > org.apache.spark.sql.AnalysisException: using columns ['key1,'key2] can > not be resolved given input columns: [key1, key2, avgtotalprice, avgqty]; > If the same Dataframe is initialized via spark.read.parquet(), the above code > works. This same code above worked with Spark 1.6.2 -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org