[ https://issues.apache.org/jira/browse/SPARK-17709?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15543141#comment-15543141 ]
Dilip Biswal commented on SPARK-17709: -------------------------------------- @ashrowty Hi Ashish, in your example, the column loyalitycardnumber is not in the outputset and that is why we see the exception. I tried using productid instead and got the correct result. {code} scala> df1.join(df2, Seq("companyid","loyaltycardnumber")); org.apache.spark.sql.AnalysisException: using columns ['companyid,'loyaltycardnumber] can not be resolved given input columns: [productid, companyid, avgprice, avgitemcount, companyid, productid] ; at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:40) at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:57) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:174) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:132) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:57) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:61) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2651) at org.apache.spark.sql.Dataset.join(Dataset.scala:679) at org.apache.spark.sql.Dataset.join(Dataset.scala:652) ... 48 elided scala> df1.join(df2, Seq("companyid","productid")); res1: org.apache.spark.sql.DataFrame = [companyid: int, productid: int ... 2 more fields] scala> df1.join(df2, Seq("companyid","productid")).show +---------+---------+--------+------------+ |companyid|productid|avgprice|avgitemcount| +---------+---------+--------+------------+ | 101| 3| 13.0| 12.0| | 100| 1| 10.0| 10.0| +---------+---------+--------+------------+ {code} > spark 2.0 join - column resolution error > ---------------------------------------- > > Key: SPARK-17709 > URL: https://issues.apache.org/jira/browse/SPARK-17709 > Project: Spark > Issue Type: Bug > Affects Versions: 2.0.0 > Reporter: Ashish Shrowty > Labels: easyfix > > If I try to inner-join two dataframes which originated from the same initial > dataframe that was loaded using spark.sql() call, it results in an error - > // reading from Hive .. the data is stored in Parquet format in Amazon S3 > val d1 = spark.sql("select * from <hivetable>") > val df1 = d1.groupBy("key1","key2") > .agg(avg("totalprice").as("avgtotalprice")) > val df2 = d1.groupBy("key1","key2") > .agg(avg("itemcount").as("avgqty")) > df1.join(df2, Seq("key1","key2")) gives error - > org.apache.spark.sql.AnalysisException: using columns ['key1,'key2] can > not be resolved given input columns: [key1, key2, avgtotalprice, avgqty]; > If the same Dataframe is initialized via spark.read.parquet(), the above code > works. This same code above worked with Spark 1.6.2 -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org