[ 
https://issues.apache.org/jira/browse/SPARK-17709?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15543921#comment-15543921
 ] 

Ashish Shrowty commented on SPARK-17709:
----------------------------------------

[~dkbiswal] Sorry Dilip .. I keep making typos .. the join was on companyid and 
product id -

scala> df1.join(df2, Seq("companyid","productid"))
org.apache.spark.sql.AnalysisException: using columns ['companyid,'productid] 
can not be resolved given input columns: [companyid, productid, avgprice, 
avgitemcount] ;
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:40)
  at 
org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:58)
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:174)
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67)
  at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126)
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67)
  at 
org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:58)
  at 
org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49)
  at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64)
  at 
org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2589)
  at org.apache.spark.sql.Dataset.join(Dataset.scala:641)
  at org.apache.spark.sql.Dataset.join(Dataset.scala:614)
  ... 48 elided

Attached is explain outputs for df1 and df2 -

scala> df1.explain
== Physical Plan ==
*HashAggregate(keys=[companyid#53, productid#54], functions=[avg(price#56)])
+- Exchange hashpartitioning(companyid#53, productid#54, 200)
   +- *HashAggregate(keys=[companyid#53, productid#54], 
functions=[partial_avg(price#56)])
      +- *Sample 0.0, 0.5, false, 2419324063718201506
         +- *Project [companyid#53, productid#54, price#56]
            +- *BatchedScan parquet 
referencedata.testproduct[productid#54,price#56,companyid#53] Format: 
ParquetFormat, InputPaths: 
s3://com.birdzi.datalake.test/testtable/companyid=100, 
s3://com.birdzi.datalake.test/testtable/co..., PushedFilters: [], ReadSchema: 
struct<productid:int,price:double>

scala> df2.explain
== Physical Plan ==
*HashAggregate(keys=[companyid#53, productid#54], 
functions=[avg(cast(itemcount#57 as bigint))])
+- Exchange hashpartitioning(companyid#53, productid#54, 200)
   +- *HashAggregate(keys=[companyid#53, productid#54], 
functions=[partial_avg(cast(itemcount#57 as bigint))])
      +- *Sample 0.0, 0.5, false, -7492644014085475670
         +- *Project [companyid#53, productid#54, itemcount#57]
            +- *BatchedScan parquet 
referencedata.testproduct[productid#54,itemcount#57,companyid#53] Format: 
ParquetFormat, InputPaths: 
s3://com.birdzi.datalake.test/testtable/companyid=100, 
s3://com.birdzi.datalake.test/testtable/co..., PushedFilters: [], ReadSchema: 
struct<productid:int,itemcount:int>


> spark 2.0 join - column resolution error
> ----------------------------------------
>
>                 Key: SPARK-17709
>                 URL: https://issues.apache.org/jira/browse/SPARK-17709
>             Project: Spark
>          Issue Type: Bug
>    Affects Versions: 2.0.0
>            Reporter: Ashish Shrowty
>              Labels: easyfix
>
> If I try to inner-join two dataframes which originated from the same initial 
> dataframe that was loaded using spark.sql() call, it results in an error -
> // reading from Hive .. the data is stored in Parquet format in Amazon S3
> val d1 = spark.sql("select * from <hivetable>")  
> val df1 = d1.groupBy("key1","key2")
>           .agg(avg("totalprice").as("avgtotalprice"))
> val df2 = d1.groupBy("key1","key2")
>           .agg(avg("itemcount").as("avgqty")) 
> df1.join(df2, Seq("key1","key2")) gives error -
> org.apache.spark.sql.AnalysisException: using columns ['key1,'key2] can 
> not be resolved given input columns: [key1, key2, avgtotalprice, avgqty];
> If the same Dataframe is initialized via spark.read.parquet(), the above code 
> works. This same code above worked with Spark 1.6.2



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to