[ https://issues.apache.org/jira/browse/SPARK-17709?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15543921#comment-15543921 ]
Ashish Shrowty commented on SPARK-17709: ---------------------------------------- [~dkbiswal] Sorry Dilip .. I keep making typos .. the join was on companyid and product id - scala> df1.join(df2, Seq("companyid","productid")) org.apache.spark.sql.AnalysisException: using columns ['companyid,'productid] can not be resolved given input columns: [companyid, productid, avgprice, avgitemcount] ; at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:40) at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:58) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:174) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:58) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2589) at org.apache.spark.sql.Dataset.join(Dataset.scala:641) at org.apache.spark.sql.Dataset.join(Dataset.scala:614) ... 48 elided Attached is explain outputs for df1 and df2 - scala> df1.explain == Physical Plan == *HashAggregate(keys=[companyid#53, productid#54], functions=[avg(price#56)]) +- Exchange hashpartitioning(companyid#53, productid#54, 200) +- *HashAggregate(keys=[companyid#53, productid#54], functions=[partial_avg(price#56)]) +- *Sample 0.0, 0.5, false, 2419324063718201506 +- *Project [companyid#53, productid#54, price#56] +- *BatchedScan parquet referencedata.testproduct[productid#54,price#56,companyid#53] Format: ParquetFormat, InputPaths: s3://com.birdzi.datalake.test/testtable/companyid=100, s3://com.birdzi.datalake.test/testtable/co..., PushedFilters: [], ReadSchema: struct<productid:int,price:double> scala> df2.explain == Physical Plan == *HashAggregate(keys=[companyid#53, productid#54], functions=[avg(cast(itemcount#57 as bigint))]) +- Exchange hashpartitioning(companyid#53, productid#54, 200) +- *HashAggregate(keys=[companyid#53, productid#54], functions=[partial_avg(cast(itemcount#57 as bigint))]) +- *Sample 0.0, 0.5, false, -7492644014085475670 +- *Project [companyid#53, productid#54, itemcount#57] +- *BatchedScan parquet referencedata.testproduct[productid#54,itemcount#57,companyid#53] Format: ParquetFormat, InputPaths: s3://com.birdzi.datalake.test/testtable/companyid=100, s3://com.birdzi.datalake.test/testtable/co..., PushedFilters: [], ReadSchema: struct<productid:int,itemcount:int> > spark 2.0 join - column resolution error > ---------------------------------------- > > Key: SPARK-17709 > URL: https://issues.apache.org/jira/browse/SPARK-17709 > Project: Spark > Issue Type: Bug > Affects Versions: 2.0.0 > Reporter: Ashish Shrowty > Labels: easyfix > > If I try to inner-join two dataframes which originated from the same initial > dataframe that was loaded using spark.sql() call, it results in an error - > // reading from Hive .. the data is stored in Parquet format in Amazon S3 > val d1 = spark.sql("select * from <hivetable>") > val df1 = d1.groupBy("key1","key2") > .agg(avg("totalprice").as("avgtotalprice")) > val df2 = d1.groupBy("key1","key2") > .agg(avg("itemcount").as("avgqty")) > df1.join(df2, Seq("key1","key2")) gives error - > org.apache.spark.sql.AnalysisException: using columns ['key1,'key2] can > not be resolved given input columns: [key1, key2, avgtotalprice, avgqty]; > If the same Dataframe is initialized via spark.read.parquet(), the above code > works. This same code above worked with Spark 1.6.2 -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org