Mark,
Could you get a heap dump (eg with YourKit) of what's using up all the
memory when you hit OOM?
Also, can you turn on infoStream and post the output leading up to the
OOM?
When you say "write session", are you closing & opening a new
IndexWriter each time? Or, just calling .commit() and then re-using
the same writer?
It seems likely this has something to do with merging, though from
your listing I count 14 segments which shouldn't have been doing any
merging at mergeFactor=20, so that's confusing.
Mike
mark harwood wrote:
But... how come setting IW's RAM buffer doesn't prevent the OOMs?
I've been setting the IndexWriter RAM buffer to 300 meg and giving
the JVM 1gig.
Last run I gave the JVM 3 gig, with writer settings of RAM
buffer=300 meg, merge factor=20, term interval=8192,
usecompound=false. All fields are ANALYZED_NO_NORMS.
Lucene version is a 2.9 build, JVM is Sun 64bit 1.6.0_07.
This graphic shows timings for 100 consecutive write sessions, each
adding 30,000 documents, committing and then closing :
http://tinyurl.com/anzcjw
You can see the periodic merge costs and then a big spike towards
the end before it crashed.
The crash details are here after adding ~3 million documents in 98
write sessions:
This batch index session added 3000 of 30000 docs : 10% complete
Exception in thread "Thread-280" java.lang.OutOfMemoryError: GC
overhead limit exceeded
at java.util.Arrays.copyOf(Unknown Source)
at java.lang.String..<init>(Unknown Source)
at
org
.apache
.lucene.search.trie.TrieUtils.longToPrefixCoded(TrieUtils.java:148)
at
org.apache.lucene.search.trie.TrieUtils.trieCodeLong(TrieUtils.java:
302)
at test.LongTrieAnalyzer
$LongTrieTokenStream.next(LongTrieAnalyzer.java:49)
at
org
.apache
.lucene
.index.DocInverterPerField.processFields(DocInverterPerField.java:159)
at
org
.apache
.lucene
.index
.DocFieldConsumersPerField
.processFields(DocFieldConsumersPerField.java:36)
at
org
.apache
.lucene
.index
.DocFieldProcessorPerThread
.processDocument(DocFieldProcessorPerThread.java:234)
at
org
.apache
.lucene.index.DocumentsWriter.updateDocument(DocumentsWriter.java:762)
at
org
.apache
.lucene.index.DocumentsWriter.addDocument(DocumentsWriter.java:740)
at
org.apache.lucene.index.IndexWriter.addDocument(IndexWriter.java:2039)
at
org.apache.lucene.index.IndexWriter.addDocument(IndexWriter.java:2013)
at test.IndexMarksFile$IndexingThread.run(IndexMarksFile.java:319)
Exception in thread "Thread-281" java.lang.OutOfMemoryError: GC
overhead limit exceeded
at org.apache.commons.csv.CharBuffer.toString(CharBuffer.java:177)
at org.apache.commons.csv.CSVParser.getLine(CSVParser.java:242)
at test.IndexMarksFile.getLuceneDocument(IndexMarksFile.java:272)
at test.IndexMarksFile$IndexingThread.run(IndexMarksFile.java:314)
Committing
Closing
Exception in thread "main" java.lang.IllegalStateException: this
writer hit an OutOfMemoryError; cannot commit
at
org.apache.lucene.index.IndexWriter.prepareCommit(IndexWriter.java:
3569)
at org.apache.lucene.index.IndexWriter.commit(IndexWriter.java:
3660)
at org.apache.lucene.index.IndexWriter.commit(IndexWriter.java:
3634)
at test.IndexMarksFile.run(IndexMarksFile.java:176)
at test.IndexMarksFile.main(IndexMarksFile.java:101)
at test.MultiIndexAndRun.main(MultiIndexAndRun.java:49)
For each write session I have a single writer, and 2 indexing
threads adding documents through this writer. There are no updates/
deletes - only adds. When both indexing threads complete the primary
thread commits and closes the writer.
I then open a searcher run some search benchmarks, close the
searcher and start another write session.
The documents have ~12 fields and are all the same size so I don't
think this OOM is down to rogue data. Each field has 100 near-unique
tokens.
The files on disk after the crash are as follows:
1930004059 Mar 9 13:32 _106.fdt
2731084 Mar 9 13:32 _106.fdx
175 Mar 9 13:30 _106.fnm
1190042394 Mar 9 13:39 _106.frq
814748995 Mar 9 13:39 _106.prx
16512596 Mar 9 13:39 _106.tii
1151364311 Mar 9 13:39 _106.tis
1949444533 Mar 9 14:53 _139.fdt
2758580 Mar 9 14:53 _139.fdx
175 Mar 9 14:51 _139.fnm
1202044423 Mar 9 15:00 _139.frq
822954002 Mar 9 15:00 _139.prx
16629104 Mar 9 15:00 _139.tii
1159392207 Mar 9 15:00 _139.tis
1930102055 Mar 9 16:15 _16c.fdt
2731084 Mar 9 16:15 _16c.fdx
175 Mar 9 16:13 _16c.fnm
1190090014 Mar 9 16:22 _16c.frq
814763781 Mar 9 16:22 _16c.prx
16514967 Mar 9 16:22 _16c.tii
1151524173 Mar 9 16:22 _16c.tis
1928053697 Mar 9 17:52 _19e.fdt
2728260 Mar 9 17:52 _19e.fdx
175 Mar 9 17:46 _19e.fnm
1188837093 Mar 9 18:08 _19e.frq
813915820 Mar 9 18:08 _19e.prx
16501902 Mar 9 18:08 _19e.tii
1150623773 Mar 9 18:08 _19e.tis
1951474247 Mar 9 20:22 _1cj.fdt
2761396 Mar 9 20:22 _1cj.fdx
175 Mar 9 20:18 _1cj.fnm
1203285781 Mar 9 20:39 _1cj.frq
823797656 Mar 9 20:39 _1cj.prx
16639997 Mar 9 20:39 _1cj.tii
1160143978 Mar 9 20:39 _1cj.tis
1929978366 Mar 10 01:02 _1fm.fdt
2731060 Mar 10 01:02 _1fm.fdx
175 Mar 10 00:43 _1fm.fnm
1190031780 Mar 10 02:36 _1fm.frq
814741146 Mar 10 02:36 _1fm.prx
16513189 Mar 10 02:36 _1fm.tii
1151399139 Mar 10 02:36 _1fm.tis
189073186 Mar 10 01:51 _1ft.fdt
267556 Mar 10 01:51 _1ft.fdx
175 Mar 10 01:50 _1ft.fnm
110750150 Mar 10 02:04 _1ft.frq
79818488 Mar 10 02:04 _1ft.prx
2326691 Mar 10 02:04 _1ft.tii
165932844 Mar 10 02:04 _1ft.tis
212500024 Mar 10 03:16 _1g5.fdt
300684 Mar 10 03:16 _1g5.fdx
175 Mar 10 03:16 _1g5.fnm
125179984 Mar 10 03:28 _1g5.frq
89703062 Mar 10 03:28 _1g5.prx
2594360 Mar 10 03:28 _1g5.tii
184495760 Mar 10 03:28 _1g5.tis
64323505 Mar 10 04:09 _1gc.fdt
91020 Mar 10 04:09 _1gc.fdx
105283820 Mar 10 04:48 _1gf.fdt
148988 Mar 10 04:48 _1gf.fdx
175 Mar 10 04:09 _1gf.fnm
1491 Mar 10 04:09 _1gf.frq
4 Mar 10 04:09 _1gf.nrm
2388 Mar 10 04:09 _1gf.prx
254 Mar 10 04:09 _1gf.tii
15761 Mar 10 04:09 _1gf.tis
191035191 Mar 10 04:09 _1gg.fdt
270332 Mar 10 04:09 _1gg.fdx
175 Mar 10 04:09 _1gg.fnm
111958741 Mar 10 04:24 _1gg.frq
80645411 Mar 10 04:24 _1gg.prx
2349153 Mar 10 04:24 _1gg.tii
167494232 Mar 10 04:24 _1gg.tis
175 Mar 10 04:20 _1gh.fnm
10223275 Mar 10 04:20 _1gh.frq
4 Mar 10 04:20 _1gh.nrm
9056546 Mar 10 04:20 _1gh.prx
329012 Mar 10 04:20 _1gh.tii
23846511 Mar 10 04:20 _1gh.tis
175 Mar 10 04:28 _1gi.fnm
10221888 Mar 10 04:28 _1gi.frq
4 Mar 10 04:28 _1gi.nrm
9054280 Mar 10 04:28 _1gi.prx
328980 Mar 10 04:28 _1gi.tii
23843209 Mar 10 04:28 _1gi.tis
175 Mar 10 04:35 _1gj.fnm
10222776 Mar 10 04:35 _1gj.frq
4 Mar 10 04:35 _1gj.nrm
9054943 Mar 10 04:35 _1gj.prx
329060 Mar 10 04:35 _1gj.tii
23849395 Mar 10 04:35 _1gj.tis
175 Mar 10 04:42 _1gk.fnm
10220381 Mar 10 04:42 _1gk.frq
4 Mar 10 04:42 _1gk.nrm
9052810 Mar 10 04:42 _1gk.prx
329029 Mar 10 04:42 _1gk.tii
23845373 Mar 10 04:42 _1gk.tis
175 Mar 10 04:48 _1gl.fnm
9274170 Mar 10 04:48 _1gl.frq
4 Mar 10 04:48 _1gl.nrm
8226681 Mar 10 04:48 _1gl.prx
303327 Mar 10 04:48 _1gl.tii
21996826 Mar 10 04:48 _1gl.tis
22418126 Mar 10 04:58 _1gm.fdt
31732 Mar 10 04:58 _1gm.fdx
175 Mar 10 04:57 _1gm.fnm
10216672 Mar 10 04:57 _1gm.frq
4 Mar 10 04:57 _1gm.nrm
9049487 Mar 10 04:57 _1gm.prx
328813 Mar 10 04:57 _1gm.tii
23829627 Mar 10 04:57 _1gm.tis
175 Mar 10 04:58 _1gn.fnm
392014 Mar 10 04:58 _1gn.frq
4 Mar 10 04:58 _1gn.nrm
415225 Mar 10 04:58 _1gn.prx
24695 Mar 10 04:58 _1gn.tii
1816750 Mar 10 04:58 _1gn.tis
683 Mar 10 04:58 segments_7t
20 Mar 10 04:58 segments.gen
1935727800 Mar 9 11:17 _u1.fdt
2739180 Mar 9 11:17 _u1.fdx
175 Mar 9 11:15 _u1.fnm
1193583522 Mar 9 11:25 _u1.frq
817164507 Mar 9 11:25 _u1.prx
16547464 Mar 9 11:25 _u1..tii
1153764013 Mar 9 11:25 _u1.tis
1949493315 Mar 9 12:21 _x3.fdt
2758580 Mar 9 12:21 _x3.fdx
175 Mar 9 12:18 _x3.fnm
1202068425 Mar 9 12:29 _x3.frq
822963200 Mar 9 12:29 _x3.prx
16629485 Mar 9 12:29 _x3.tii
1159419149 Mar 9 12:29 _x3.tis
Any ideas? I'm out of settings to tweak here.
Cheers,
Mark
----- Original Message ----
From: Michael McCandless <luc...@mikemccandless.com>
To: java-user@lucene.apache.org
Sent: Tuesday, 10 March, 2009 0:01:30
Subject: Re: A model for predicting indexing memory costs?
mark harwood wrote:
I've been building a large index (hundreds of millions) with mainly
structured data which consists of several fields with mostly unique
values.
I've been hitting out of memory issues when doing periodic commits/
closes which I suspect is down to the sheer number of terms.
I set the IndexWriter..setTermIndexInterval to 8 times the normal
size of 128 (an intervalof 1024) which delayed the onset of the
issue but still failed.
I think that setting won't change how much RAM is used when writing.
I'd like to get a little more scientific about what to set here
rather than simply experimenting with settings and hoping it
doesn't fail again.
Does anyone have a decent model worked out for how much memory is
consumed at peak? I'm guessing the contributing factors are:
* Numbers of fields
* Numbers of unique terms per field
* Numbers of segments?
Number of net unique terms (across all fields) is a big driver, but
also net number of term occurrences, and how many docs. Lots of
tiny docs take more RAM than fewer large docs, when # occurrences
are equal.
But... how come setting IW's RAM buffer doesn't prevent the OOMs?
IW should simply flush when it's used that much RAM.
I don't think number of segments is a factor.
Though mergeFactor is, since during merging the SegmentMerger holds
SegmentReaders open, and int[] maps (if there are any deletes) for
each segment. Do you have a large merge taking place when you hit
the OOMs?
Mike
---------------------------------------------------------------------
To unsubscribe, e-mail: java-user-unsubscr...@lucene.apache.org
For additional commands, e-mail: java-user-h...@lucene.apache.org
---------------------------------------------------------------------
To unsubscribe, e-mail: java-user-unsubscr...@lucene.apache.org
For additional commands, e-mail: java-user-h...@lucene.apache.org
---------------------------------------------------------------------
To unsubscribe, e-mail: java-user-unsubscr...@lucene.apache.org
For additional commands, e-mail: java-user-h...@lucene.apache.org