On Sat, Mar 14, 2009 at 1:37 PM, <josef.p...@gmail.com> wrote: > On Sat, Mar 14, 2009 at 3:11 PM, Charles R Harris > <charlesr.har...@gmail.com> wrote: > > Hi Josef, > > > > On Sat, Mar 14, 2009 at 12:14 PM, <josef.p...@gmail.com> wrote: > > <snip> > > > >> > >> {{{ > >> import numpy as np > >> > >> assert np.all(np.random.hypergeometric(3,18,11,size=10) < 4) > >> assert np.all(np.random.hypergeometric(18,3,11,size=10) > 0) > >> > >> pr = 0.8 > >> N = 100000 > >> rvsn = np.random.logseries(pr,size=N) > >> # these two frequency counts should be close to theoretical numbers > >> with this large sample > > Sorry, cut and paste error, the second case is k=2 > for k=1 the unpatched version undersamples, for k=2 the unpatched > version oversamples, that's the reason for the inequalities; the > bugfix should reallocate them correctly. > > for several runs with N = 100000, I get with the patched version > > >>> rvsn = np.random.logseries(pr,size=N); np.sum(rvsn==1) / float(N) > in range: 0.4951, 0.4984 # unpatched version is too small > > >>> rvsn = np.random.logseries(pr,size=N); np.sum(rvsn==2) / float(N) > in range: 0.1980, 0.2001 # unpatched version is too large > > with constraints a bit more tight, it should be: > > >> assert np.sum(rvsn==1) / float(N) > 0.49 # theoretical: 0.49706795 > >> assert np.sum(rvsn==2) / float(N) < 0.205 # theoretical: 0.19882718 >
OK. One more question: how often do the tests fail? I want to include a note to repeat testing if the test fails. Chuck
_______________________________________________ Numpy-discussion mailing list Numpy-discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion