Argh, corrigindo um detalhe ali perto do fim:
-- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...1111)**x**10^w = r*n.
Novamente, como n é primo com 2, 3 e 5 *e x*, conclui-se que n divide
111....1111 (com q 1's), e portanto q>=p=k.

On Sun, Jul 10, 2022 at 1:24 AM Ralph Costa Teixeira <ralp...@gmail.com>
wrote:

> A chave: *os "restos parciais" que aparecem são exatamente os restos que
> x, 10x, 100x, .... deixam na divisão por n.*
> ---///---
>
> MAIS SPOILERS ABAIXO
>
>
> ...
>
>
> ....
>
>
> ...
>
>
> ....
>
> Acho que facilita bastante pensar no "período" de 1/n de outro jeito:
> ---///---
> LEMA:
> (i) Dado n não divisível por 2 ou 5, existe algum número da forma
> 111...111 que é múltiplo de n.
> (ii) Se n não for divisível por 2, 3 ou 5, o *menor* número do tipo
> 111...111 que é múltiplo de n tem k dígitos, onde k é exatamente o tamanho
> do período (fundamental) da dízima em 1/n.
> PROVA:
>
> (i) Olhe os restos de 1, 11, 111, 1111, ... na divisão por n. São n
> possibilidades, de 0 a n-1, então alguma hora algum resto tem que repetir.
> Isto significa que 1111..1111 (com A dígitos) e 11...111 (com B dígitos,
> B<A), deixam o mesmo resto na divisão por n; subtraindo, temos que
> 1111...11100000 (A 1's e B 0's) = 1111....111 * (10^B) é múltiplo de n. Mas
> n não tem fator comum com aquele 10^B (pois não é divisível por 2 nem por
> 5), portanto 1111...111 (com k=A-B dígitos) é divisível por n.
>
> (ii) Denote por P=111....111 (com p dígitos) o menor daqueles caras com
> apenas "1s" que é múltiplo de n, e denote por k o "período fundamental" na
> dízima de 1/n.
> Por um lado, como 9P=999....9999=10^p-1 é múltiplo de n, temos 10^p *
> (1/n) - 1/n inteiro. Mas isso significa que a parte decimal de 1/n "se
> repete" de p em p dígitos, ou seja, que a dízima de 1/n tem período p. Em
> particular, p>=k.
> Por outro lado, sendo k o período fundamental, temos 10^k * (1/n) - (1/n)
> com número finito de casas decimais, ou seja, (10^k-1)/n = m/10^z com m
> inteiro, e z=número de casas decimais que "sobraram". Mas daqui vem
> 9*(111...111)*10^z = m*n (com k dígitos 1s). Como n é primo com 2, 3 e 5,
> conclui-se que 111...1111 (k 1's) tem que ser múltiplo de n, e portanto
> k>=p.
>
> Note um efeito colateral disso tudo: provamos que 10^k*(1/n)- 1/n =
> 10^p*(1/n)-1/n = inteiro. Assim aquele z vale 0, ou seja, não tem "casas
> decimais que sobram" -- a dízima periódica do 1/n se inicia logo no
> primeiro dígito!
>
> ---///---
> Agora fica tudo bem simples:
> a) Na notação acima, provamos que k=p, e n divide 111....1111 com p
> dígitos.
> b) Seja q o período (fundamental) da dízima de B=x/n irredutível.
>
> Em primeiro lugar, provemos que q=k. Basicamente repetimos o que fizemos
> no lema:
> -- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...1111)*10^w = r*n.
> Novamente, como n é primo com 2, 3 e 5, conclui-se que n divide 111....1111
> (com q 1's), e portanto q>=p=k.
> -- Por outro lado, como (10^k-1)/n é inteiro, (10^k-1)*x/n=10^k*B-B também
> é inteiro, ou seja, a dízima de B tem período k (e se inicia no primeiro
> dígito!). Portanto k>=q.
>
> *Enfim, note que os tais "restos parciais" que aparecem são exatamente os
> restos que x, 10x, 100x, ...., 10^q.x deixam na divisão por n. *A soma
> desses caras vale (1111...1111)*x, que é divisível por n pois temos ali
> q=k=p dígitos 1. Por isso, ao dividir esses restos parciais por n, a soma
> dos novos restos tem que ser múltiplo de n tambem.
>
> Foi?
>
>
> On Sat, Jul 9, 2022 at 7:16 PM Rubens Vilhena Fonseca <
> rubens.vilhen...@gmail.com> wrote:
>
>> Gostaria de uma demonstração para o seguinte teorema.
>> *Teorema*. Seja n um inteiro positivo não divisível por 2, 3 ou 5, e
>> suponha que a expansão decimal de l/n tenha período k. Então n é um fator
>> do inteiro 111 ... 11 (k 1 's). Além disso, a soma dos restos parciais na
>> divisão obtida de cada fração irredutível x/n é um múltiplo de n.
>> Comentário:
>> Pelo que entendi, se 1/13  tem período k =6. Então 13  divide 111111 (
>> k=6 1's).
>> Essa parte consegui provar.
>> Quanto à segunda parte  para 1/13 os resto da divisão sem repetição são
>> {10, 9, 12, 3, 4, 1}. Então 10+9+12+3+4+1= 13q . (Não soube provar)
>> Não consigo organizar uma sequência  de passos para a demonstração
>> dos dois fatos.
>> Agradeço qualquer ajuda.
>> [[ ]]'s
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a