Would you be able to share your code? I'm at a loss as to why we are seeing 
this behavior and can much more quickly figure it out by running the code in a 
debugger.

   Barry

You can send the code [email protected] <mailto:[email protected]> 
if you don't want to share the code with everyone,

> On Sep 30, 2025, at 5:05 AM, Moral Sanchez, Elena 
> <[email protected]> wrote:
> 
> This is what I get:
>     Residual norms for mg_levels_1_ solve.
>     0 KSP Residual norm 2.249726733143e+00
>     Residual norms for mg_levels_1_ solve.
>     0 KSP unpreconditioned resid norm 2.249726733143e+00 true resid norm 
> 2.249726733143e+00 ||r(i)||/||b|| 1.000000000000e+00
>     1 KSP Residual norm 1.433120400946e+00
>     1 KSP unpreconditioned resid norm 1.433120400946e+00 true resid norm 
> 1.433120400946e+00 ||r(i)||/||b|| 6.370197677051e-01
>     2 KSP Residual norm 1.169262560123e+00
>     2 KSP unpreconditioned resid norm 1.169262560123e+00 true resid norm 
> 1.169262560123e+00 ||r(i)||/||b|| 5.197353718108e-01
>     3 KSP Residual norm 1.323528716607e+00
>     3 KSP unpreconditioned resid norm 1.323528716607e+00 true resid norm 
> 1.323528716607e+00 ||r(i)||/||b|| 5.883064361148e-01
>     4 KSP Residual norm 5.006323254234e-01
>     4 KSP unpreconditioned resid norm 5.006323254234e-01 true resid norm 
> 5.006323254234e-01 ||r(i)||/||b|| 2.225302824775e-01
>     5 KSP Residual norm 3.569836784785e-01
>     5 KSP unpreconditioned resid norm 3.569836784785e-01 true resid norm 
> 3.569836784785e-01 ||r(i)||/||b|| 1.586786844906e-01
>     6 KSP Residual norm 2.493182937513e-01
>     6 KSP unpreconditioned resid norm 2.493182937513e-01 true resid norm 
> 2.493182937513e-01 ||r(i)||/||b|| 1.108215900529e-01
>     7 KSP Residual norm 3.038202502298e-01
>     7 KSP unpreconditioned resid norm 3.038202502298e-01 true resid norm 
> 3.038202502298e-01 ||r(i)||/||b|| 1.350476241198e-01
>     8 KSP Residual norm 2.780214194402e-01
>     8 KSP unpreconditioned resid norm 2.780214194402e-01 true resid norm 
> 2.780214194402e-01 ||r(i)||/||b|| 1.235800843473e-01
>     9 KSP Residual norm 1.676826341491e-01
>     9 KSP unpreconditioned resid norm 1.676826341491e-01 true resid norm 
> 1.676826341491e-01 ||r(i)||/||b|| 7.453466755710e-02
>    10 KSP Residual norm 1.209985378713e-01
>    10 KSP unpreconditioned resid norm 1.209985378713e-01 true resid norm 
> 1.209985378713e-01 ||r(i)||/||b|| 5.378366007245e-02
>    11 KSP Residual norm 9.445076689969e-02
>    11 KSP unpreconditioned resid norm 9.445076689969e-02 true resid norm 
> 9.445076689969e-02 ||r(i)||/||b|| 4.198321756516e-02
>    12 KSP Residual norm 8.308555284580e-02
>    12 KSP unpreconditioned resid norm 8.308555284580e-02 true resid norm 
> 8.308555284580e-02 ||r(i)||/||b|| 3.693139776569e-02
>    13 KSP Residual norm 5.472865592585e-02
>    13 KSP unpreconditioned resid norm 5.472865592585e-02 true resid norm 
> 5.472865592585e-02 ||r(i)||/||b|| 2.432680161532e-02
>    14 KSP Residual norm 4.357870564398e-02
>    14 KSP unpreconditioned resid norm 4.357870564398e-02 true resid norm 
> 4.357870564398e-02 ||r(i)||/||b|| 1.937066622447e-02
>    15 KSP Residual norm 5.079681292439e-02
>    15 KSP unpreconditioned resid norm 5.079681292439e-02 true resid norm 
> 5.079681292439e-02 ||r(i)||/||b|| 2.257910357558e-02
>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>     Residual norms for mg_levels_1_ solve.
>     0 KSP Residual norm 5.079681292439e-02
>     Residual norms for mg_levels_1_ solve.
>     0 KSP unpreconditioned resid norm 5.079681292439e-02 true resid norm 
> 5.079681292439e-02 ||r(i)||/||b|| 2.257910357559e-02
>     1 KSP Residual norm 2.934938644003e-02
>     1 KSP unpreconditioned resid norm 2.934938644003e-02 true resid norm 
> 2.934938644003e-02 ||r(i)||/||b|| 1.304575618348e-02
>     2 KSP Residual norm 3.257065831294e-02
>     2 KSP unpreconditioned resid norm 3.257065831294e-02 true resid norm 
> 3.257065831294e-02 ||r(i)||/||b|| 1.447760647243e-02
>     3 KSP Residual norm 4.143063876867e-02
>     3 KSP unpreconditioned resid norm 4.143063876867e-02 true resid norm 
> 4.143063876867e-02 ||r(i)||/||b|| 1.841585387164e-02
>     4 KSP Residual norm 4.822471409489e-02
>     4 KSP unpreconditioned resid norm 4.822471409489e-02 true resid norm 
> 4.822471409489e-02 ||r(i)||/||b|| 2.143580968499e-02
>     5 KSP Residual norm 3.197538246153e-02
>     5 KSP unpreconditioned resid norm 3.197538246153e-02 true resid norm 
> 3.197538246153e-02 ||r(i)||/||b|| 1.421300729127e-02
>     6 KSP Residual norm 3.461217019835e-02
>     6 KSP unpreconditioned resid norm 3.461217019835e-02 true resid norm 
> 3.461217019835e-02 ||r(i)||/||b|| 1.538505529958e-02
>     7 KSP Residual norm 3.410193775327e-02
>     7 KSP unpreconditioned resid norm 3.410193775327e-02 true resid norm 
> 3.410193775327e-02 ||r(i)||/||b|| 1.515825777899e-02
>     8 KSP Residual norm 4.690424294464e-02
>     8 KSP unpreconditioned resid norm 4.690424294464e-02 true resid norm 
> 4.690424294464e-02 ||r(i)||/||b|| 2.084886233233e-02
>     9 KSP Residual norm 3.366148892800e-02
>     9 KSP unpreconditioned resid norm 3.366148892800e-02 true resid norm 
> 3.366148892800e-02 ||r(i)||/||b|| 1.496247896783e-02
>    10 KSP Residual norm 4.068015727689e-02
>    10 KSP unpreconditioned resid norm 4.068015727689e-02 true resid norm 
> 4.068015727689e-02 ||r(i)||/||b|| 1.808226602707e-02
>    11 KSP Residual norm 2.658836123104e-02
>    11 KSP unpreconditioned resid norm 2.658836123104e-02 true resid norm 
> 2.658836123104e-02 ||r(i)||/||b|| 1.181848481389e-02
>    12 KSP Residual norm 2.826244186003e-02
>    12 KSP unpreconditioned resid norm 2.826244186003e-02 true resid norm 
> 2.826244186003e-02 ||r(i)||/||b|| 1.256261102456e-02
>    13 KSP Residual norm 2.981793619508e-02
>    13 KSP unpreconditioned resid norm 2.981793619508e-02 true resid norm 
> 2.981793619508e-02 ||r(i)||/||b|| 1.325402581380e-02
>    14 KSP Residual norm 3.525455091450e-02
>    14 KSP unpreconditioned resid norm 3.525455091450e-02 true resid norm 
> 3.525455091450e-02 ||r(i)||/||b|| 1.567059251914e-02
>    15 KSP Residual norm 2.331539121838e-02
>    15 KSP unpreconditioned resid norm 2.331539121838e-02 true resid norm 
> 2.331539121838e-02 ||r(i)||/||b|| 1.036365478300e-02
>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>     Residual norms for mg_levels_1_ solve.
>     0 KSP Residual norm 2.421498365806e-02
>     Residual norms for mg_levels_1_ solve.
>     0 KSP unpreconditioned resid norm 2.421498365806e-02 true resid norm 
> 2.421498365806e-02 ||r(i)||/||b|| 1.000000000000e+00
>     1 KSP Residual norm 1.761072112362e-02
>     1 KSP unpreconditioned resid norm 1.761072112362e-02 true resid norm 
> 1.761072112362e-02 ||r(i)||/||b|| 7.272654556492e-01
>     2 KSP Residual norm 1.400842489042e-02
>     2 KSP unpreconditioned resid norm 1.400842489042e-02 true resid norm 
> 1.400842489042e-02 ||r(i)||/||b|| 5.785023474818e-01
>     3 KSP Residual norm 1.419665483348e-02
>     3 KSP unpreconditioned resid norm 1.419665483348e-02 true resid norm 
> 1.419665483348e-02 ||r(i)||/||b|| 5.862756314004e-01
>     4 KSP Residual norm 1.617590701667e-02
>     4 KSP unpreconditioned resid norm 1.617590701667e-02 true resid norm 
> 1.617590701667e-02 ||r(i)||/||b|| 6.680123036665e-01
>     5 KSP Residual norm 1.354824081005e-02
>     5 KSP unpreconditioned resid norm 1.354824081005e-02 true resid norm 
> 1.354824081005e-02 ||r(i)||/||b|| 5.594982429624e-01
>     6 KSP Residual norm 1.387252917475e-02
>     6 KSP unpreconditioned resid norm 1.387252917475e-02 true resid norm 
> 1.387252917475e-02 ||r(i)||/||b|| 5.728902967950e-01
>     7 KSP Residual norm 1.514043102087e-02
>     7 KSP unpreconditioned resid norm 1.514043102087e-02 true resid norm 
> 1.514043102087e-02 ||r(i)||/||b|| 6.252505157414e-01
>     8 KSP Residual norm 1.275811124745e-02
>     8 KSP unpreconditioned resid norm 1.275811124745e-02 true resid norm 
> 1.275811124745e-02 ||r(i)||/||b|| 5.268684640721e-01
>     9 KSP Residual norm 1.241039155981e-02
>     9 KSP unpreconditioned resid norm 1.241039155981e-02 true resid norm 
> 1.241039155981e-02 ||r(i)||/||b|| 5.125087728764e-01
>    10 KSP Residual norm 9.585207801652e-03
>    10 KSP unpreconditioned resid norm 9.585207801652e-03 true resid norm 
> 9.585207801652e-03 ||r(i)||/||b|| 3.958378802565e-01
>    11 KSP Residual norm 9.022641230732e-03
>    11 KSP unpreconditioned resid norm 9.022641230732e-03 true resid norm 
> 9.022641230732e-03 ||r(i)||/||b|| 3.726057121550e-01
>    12 KSP Residual norm 1.187709152046e-02
>    12 KSP unpreconditioned resid norm 1.187709152046e-02 true resid norm 
> 1.187709152046e-02 ||r(i)||/||b|| 4.904852172597e-01
>    13 KSP Residual norm 1.084880112494e-02
>    13 KSP unpreconditioned resid norm 1.084880112494e-02 true resid norm 
> 1.084880112494e-02 ||r(i)||/||b|| 4.480201712351e-01
>    14 KSP Residual norm 8.194750346781e-03
>    14 KSP unpreconditioned resid norm 8.194750346781e-03 true resid norm 
> 8.194750346781e-03 ||r(i)||/||b|| 3.384165136140e-01
>    15 KSP Residual norm 7.614246199165e-03
>    15 KSP unpreconditioned resid norm 7.614246199165e-03 true resid norm 
> 7.614246199165e-03 ||r(i)||/||b|| 3.144435819857e-01
>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>     Residual norms for mg_levels_1_ solve.
>     0 KSP Residual norm 7.614246199165e-03
>     Residual norms for mg_levels_1_ solve.
>     0 KSP unpreconditioned resid norm 7.614246199165e-03 true resid norm 
> 7.614246199165e-03 ||r(i)||/||b|| 3.144435819857e-01
>     1 KSP Residual norm 5.620014684145e-03
>     1 KSP unpreconditioned resid norm 5.620014684145e-03 true resid norm 
> 5.620014684145e-03 ||r(i)||/||b|| 2.320883120759e-01
>     2 KSP Residual norm 6.643368363907e-03
>     2 KSP unpreconditioned resid norm 6.643368363907e-03 true resid norm 
> 6.643368363907e-03 ||r(i)||/||b|| 2.743494878096e-01
>     3 KSP Residual norm 8.708642393659e-03
>     3 KSP unpreconditioned resid norm 8.708642393659e-03 true resid norm 
> 8.708642393659e-03 ||r(i)||/||b|| 3.596385823189e-01
>     4 KSP Residual norm 6.401852907459e-03
>     4 KSP unpreconditioned resid norm 6.401852907459e-03 true resid norm 
> 6.401852907459e-03 ||r(i)||/||b|| 2.643756856440e-01
>     5 KSP Residual norm 7.230576215262e-03
>     5 KSP unpreconditioned resid norm 7.230576215262e-03 true resid norm 
> 7.230576215262e-03 ||r(i)||/||b|| 2.985992605803e-01
>     6 KSP Residual norm 6.204081601285e-03
>     6 KSP unpreconditioned resid norm 6.204081601285e-03 true resid norm 
> 6.204081601285e-03 ||r(i)||/||b|| 2.562083744880e-01
>     7 KSP Residual norm 7.038656665944e-03
>     7 KSP unpreconditioned resid norm 7.038656665944e-03 true resid norm 
> 7.038656665944e-03 ||r(i)||/||b|| 2.906736079337e-01
>     8 KSP Residual norm 7.194079694050e-03
>     8 KSP unpreconditioned resid norm 7.194079694050e-03 true resid norm 
> 7.194079694050e-03 ||r(i)||/||b|| 2.970920730585e-01
>     9 KSP Residual norm 6.353576889135e-03
>     9 KSP unpreconditioned resid norm 6.353576889135e-03 true resid norm 
> 6.353576889135e-03 ||r(i)||/||b|| 2.623820432363e-01
>    10 KSP Residual norm 7.313589502731e-03
>    10 KSP unpreconditioned resid norm 7.313589502731e-03 true resid norm 
> 7.313589502731e-03 ||r(i)||/||b|| 3.020274391264e-01
>    11 KSP Residual norm 6.643320423193e-03
>    11 KSP unpreconditioned resid norm 6.643320423193e-03 true resid norm 
> 6.643320423193e-03 ||r(i)||/||b|| 2.743475080142e-01
>    12 KSP Residual norm 7.235443182108e-03
>    12 KSP unpreconditioned resid norm 7.235443182108e-03 true resid norm 
> 7.235443182108e-03 ||r(i)||/||b|| 2.988002504681e-01
>    13 KSP Residual norm 4.971292307201e-03
>    13 KSP unpreconditioned resid norm 4.971292307201e-03 true resid norm 
> 4.971292307201e-03 ||r(i)||/||b|| 2.052981896416e-01
>    14 KSP Residual norm 5.357933842147e-03
>    14 KSP unpreconditioned resid norm 5.357933842147e-03 true resid norm 
> 5.357933842147e-03 ||r(i)||/||b|| 2.212652264320e-01
>    15 KSP Residual norm 5.841682994497e-03
>    15 KSP unpreconditioned resid norm 5.841682994497e-03 true resid norm 
> 5.841682994497e-03 ||r(i)||/||b|| 2.412424917146e-01
>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
> Cheers,
> Elena
> From: Barry Smith <[email protected] <mailto:[email protected]>>
> Sent: 29 September 2025 20:31:26
> To: Moral Sanchez, Elena
> Cc: Mark Adams; petsc-users
> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG at 
> the finest level
>  
> 
>   Thanks. I missed something earlier in the KSPView
> 
>>> using UNPRECONDITIONED norm type for convergence test
> 
> Please add the options 
> 
>>>>> -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual 
> 
> It is using the unpreconditioned residual norms for convergence testing but 
> we are printing the preconditioned norms.
> 
> Barry
> 
> 
>> On Sep 29, 2025, at 11:12 AM, Moral Sanchez, Elena 
>> <[email protected] <mailto:[email protected]>> 
>> wrote:
>> 
>> This is the output:
>>     Residual norms for mg_levels_1_ solve.
>>     0 KSP Residual norm 2.249726733143e+00
>>     1 KSP Residual norm 1.433120400946e+00
>>     2 KSP Residual norm 1.169262560123e+00
>>     3 KSP Residual norm 1.323528716607e+00
>>     4 KSP Residual norm 5.006323254234e-01
>>     5 KSP Residual norm 3.569836784785e-01
>>     6 KSP Residual norm 2.493182937513e-01
>>     7 KSP Residual norm 3.038202502298e-01
>>     8 KSP Residual norm 2.780214194402e-01
>>     9 KSP Residual norm 1.676826341491e-01
>>    10 KSP Residual norm 1.209985378713e-01
>>    11 KSP Residual norm 9.445076689969e-02
>>    12 KSP Residual norm 8.308555284580e-02
>>    13 KSP Residual norm 5.472865592585e-02
>>    14 KSP Residual norm 4.357870564398e-02
>>    15 KSP Residual norm 5.079681292439e-02
>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>     Residual norms for mg_levels_1_ solve.
>>     0 KSP Residual norm 5.079681292439e-02
>>     1 KSP Residual norm 2.934938644003e-02
>>     2 KSP Residual norm 3.257065831294e-02
>>     3 KSP Residual norm 4.143063876867e-02
>>     4 KSP Residual norm 4.822471409489e-02
>>     5 KSP Residual norm 3.197538246153e-02
>>     6 KSP Residual norm 3.461217019835e-02
>>     7 KSP Residual norm 3.410193775327e-02
>>     8 KSP Residual norm 4.690424294464e-02
>>     9 KSP Residual norm 3.366148892800e-02
>>    10 KSP Residual norm 4.068015727689e-02
>>    11 KSP Residual norm 2.658836123104e-02
>>    12 KSP Residual norm 2.826244186003e-02
>>    13 KSP Residual norm 2.981793619508e-02
>>    14 KSP Residual norm 3.525455091450e-02
>>    15 KSP Residual norm 2.331539121838e-02
>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>     Residual norms for mg_levels_1_ solve.
>>     0 KSP Residual norm 2.421498365806e-02
>>     1 KSP Residual norm 1.761072112362e-02
>>     2 KSP Residual norm 1.400842489042e-02
>>     3 KSP Residual norm 1.419665483348e-02
>>     4 KSP Residual norm 1.617590701667e-02
>>     5 KSP Residual norm 1.354824081005e-02
>>     6 KSP Residual norm 1.387252917475e-02
>>     7 KSP Residual norm 1.514043102087e-02
>>     8 KSP Residual norm 1.275811124745e-02
>>     9 KSP Residual norm 1.241039155981e-02
>>    10 KSP Residual norm 9.585207801652e-03
>>    11 KSP Residual norm 9.022641230732e-03
>>    12 KSP Residual norm 1.187709152046e-02
>>    13 KSP Residual norm 1.084880112494e-02
>>    14 KSP Residual norm 8.194750346781e-03
>>    15 KSP Residual norm 7.614246199165e-03
>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>     Residual norms for mg_levels_1_ solve.
>>     0 KSP Residual norm 7.614246199165e-03
>>     1 KSP Residual norm 5.620014684145e-03
>>     2 KSP Residual norm 6.643368363907e-03
>>     3 KSP Residual norm 8.708642393659e-03
>>     4 KSP Residual norm 6.401852907459e-03
>>     5 KSP Residual norm 7.230576215262e-03
>>     6 KSP Residual norm 6.204081601285e-03
>>     7 KSP Residual norm 7.038656665944e-03
>>     8 KSP Residual norm 7.194079694050e-03
>>     9 KSP Residual norm 6.353576889135e-03
>>    10 KSP Residual norm 7.313589502731e-03
>>    11 KSP Residual norm 6.643320423193e-03
>>    12 KSP Residual norm 7.235443182108e-03
>>    13 KSP Residual norm 4.971292307201e-03
>>    14 KSP Residual norm 5.357933842147e-03
>>    15 KSP Residual norm 5.841682994497e-03
>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>> 
>> From: Barry Smith <[email protected] <mailto:[email protected]>>
>> Sent: 29 September 2025 15:56:33
>> To: Moral Sanchez, Elena
>> Cc: Mark Adams; petsc-users
>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG at 
>> the finest level
>>  
>> 
>>   I asked you to run with 
>> 
>>>>>  -ksp_monitor -mg_levels_ksp_monitor -ksp_converged_reason 
>>>>> -mg_levels_ksp_converged_reason
>> 
>> you chose not to, delaying the process of understanding what is happening.
>> 
>>   Please run with those options and send the output. My guess is that you 
>> are computing the "residual norms" in your own monitor code, and it is doing 
>> so differently than what PETSc does, thus resulting in the appearance of a 
>> sufficiently small residual norm, whereas PETSc may not have calculated 
>> something that small.
>> 
>> Barry
>> 
>> 
>>> On Sep 29, 2025, at 8:39 AM, Moral Sanchez, Elena 
>>> <[email protected] <mailto:[email protected]>> 
>>> wrote:
>>> 
>>> Thanks for the hint. I agree that the coarse solve should be much more 
>>> "accurate". However, for the moment I am just trying to understand what the 
>>> MG is doing exactly. 
>>> 
>>> I am puzzled to see that the fine grid smoother ("lvl 0") does not stop 
>>> when the residual becomes less than 1e-1. It should converge due to the 
>>> atol. 
>>> 
>>> From: Mark Adams <[email protected] <mailto:[email protected]>>
>>> Sent: 29 September 2025 14:20:56
>>> To: Moral Sanchez, Elena
>>> Cc: Barry Smith; petsc-users
>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG at 
>>> the finest level
>>>  
>>> Oh I see the coarse grid solver in your full solver output now.
>>> You still want an accurate coarse grid solve. Usually (the default in GAMG) 
>>> you use a direct solver on one process, and cousin until the coarse grid is 
>>> small enough to make that cheap.
>>> 
>>> On Mon, Sep 29, 2025 at 8:07 AM Moral Sanchez, Elena 
>>> <[email protected] <mailto:[email protected]>> 
>>> wrote:
>>>> Hi, I doubled the system size and changed the tolerances just to show a 
>>>> better example of the problem. This is the output of the callbacks in the 
>>>> first iteration:
>>>>     CG Iter 0/1 | res = 2.25e+00/1.00e-09 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 2.25e+00/1.00e-01 | 0.3 s
>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 1.43e+00/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 1.17e+00/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 1.32e+00/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 5.01e-01/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 3.57e-01/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 2.49e-01/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 3.04e-01/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 2.78e-01/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 1.68e-01/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 1.21e-01/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 9.45e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 8.31e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 5.47e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 4.36e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 5.08e-02/1.00e-01 | 0.1 s
>>>>         ConvergedReason MG lvl 0: 4
>>>>         MG lvl -1 (s=524): CG Iter 0/15 | res = 8.15e-02/1.00e-01 | 3.0 s
>>>>         ConvergedReason MG lvl -1: 3
>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 5.08e-02/1.00e-01 | 0.3 s
>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 2.93e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 3.26e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 4.14e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 4.82e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 3.20e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 3.46e-02/1.00e-01 | 0.3 s
>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 3.41e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 4.69e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 3.37e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 4.07e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 2.66e-02/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 2.83e-02/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 2.98e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 3.53e-02/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 2.33e-02/1.00e-01 | 0.2 s
>>>>         ConvergedReason MG lvl 0: 4
>>>>     CG Iter 1/1 | res = 2.42e-02/1.00e-09 | 5.6 s
>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 2.42e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 1.76e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 1.40e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 1.42e-02/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 1.62e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 1.35e-02/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 1.39e-02/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 1.51e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 1.28e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 1.24e-02/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 9.59e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 9.02e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 1.19e-02/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 1.08e-02/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 8.19e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 7.61e-03/1.00e-01 | 0.1 s
>>>>         ConvergedReason MG lvl 0: 4
>>>>         MG lvl -1 (s=524): CG Iter 0/15 | res = 1.38e-02/1.00e-01 | 5.2 s
>>>>         ConvergedReason MG lvl -1: 3
>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 7.61e-03/1.00e-01 | 0.2 s
>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 5.62e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 6.64e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 8.71e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 6.40e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 7.23e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 6.20e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 7.04e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 7.19e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 6.35e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 7.31e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 6.64e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 7.24e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 4.97e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 5.36e-03/1.00e-01 | 0.1 s
>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 5.84e-03/1.00e-01 | 0.1 s
>>>>         ConvergedReason MG lvl 0: 4    
>>>>     CG ConvergedReason: -3 
>>>> 
>>>> For completeness, I add here the -ksp_view of the whole solver:
>>>>     KSP Object: 1 MPI process
>>>>       type: cg
>>>>         variant HERMITIAN
>>>>       maximum iterations=1, nonzero initial guess
>>>>       tolerances: relative=1e-08, absolute=1e-09, divergence=10000.
>>>>       left preconditioning
>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>     PC Object: 1 MPI process
>>>>       type: mg
>>>>         type is MULTIPLICATIVE, levels=2 cycles=v
>>>>           Cycles per PCApply=1
>>>>           Not using Galerkin computed coarse grid matrices
>>>>       Coarse grid solver -- level 0 -------------------------------
>>>>         KSP Object: (mg_coarse_) 1 MPI process
>>>>           type: cg
>>>>         variant HERMITIAN
>>>>           maximum iterations=15, nonzero initial guess
>>>>           tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>           left preconditioning
>>>>           using UNPRECONDITIONED norm type for convergence test
>>>>         PC Object: (mg_coarse_) 1 MPI process
>>>>           type: none
>>>>           linear system matrix = precond matrix:
>>>>           Mat Object: 1 MPI process
>>>>         type: python
>>>>         rows=524, cols=524
>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>       Down solver (pre-smoother) on level 1 -------------------------------
>>>>         KSP Object: (mg_levels_1_) 1 MPI process
>>>>           type: cg
>>>>         variant HERMITIAN
>>>>           maximum iterations=15, nonzero initial guess
>>>>           tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>           left preconditioning
>>>>           using UNPRECONDITIONED norm type for convergence test
>>>>         PC Object: (mg_levels_1_) 1 MPI process
>>>>           type: none
>>>>           linear system matrix = precond matrix:
>>>>           Mat Object: 1 MPI process
>>>>         type: python
>>>>         rows=884, cols=884
>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>       Up solver (post-smoother) same as down solver (pre-smoother)
>>>>       linear system matrix = precond matrix:
>>>>       Mat Object: 1 MPI process
>>>>         type: python
>>>>         rows=884, cols=884
>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>         
>>>> Regarding Mark's Email: What do you mean with "the whole solver doesn't 
>>>> have a coarse grid"? I am using my own Restriction and Interpolation 
>>>> operators.
>>>> Thanks for the help,
>>>> Elena
>>>> 
>>>> From: Mark Adams <[email protected] <mailto:[email protected]>>
>>>> Sent: 28 September 2025 20:13:54
>>>> To: Barry Smith
>>>> Cc: Moral Sanchez, Elena; petsc-users
>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG 
>>>> at the finest level
>>>>  
>>>> Not sure why your "whole"solver does not have a coarse grid but this is 
>>>> wrong:
>>>> 
>>>>> KSP Object: (mg_coarse_) 1 MPI process
>>>>>   type: cg
>>>>>     variant HERMITIAN
>>>>>   maximum iterations=100, initial guess is zero
>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>> 
>>>>> The coarse grid has to be accurate. The defaults are a good place to 
>>>>> start: max_it=10.000, rtol=1e-5, atol=1e-30 (ish)
>>>> 
>>>> On Fri, Sep 26, 2025 at 3:21 PM Barry Smith <[email protected] 
>>>> <mailto:[email protected]>> wrote:
>>>>>   Looks reasonable. Send the output running with 
>>>>> 
>>>>>    -ksp_monitor -mg_levels_ksp_monitor -ksp_converged_reason 
>>>>> -mg_levels_ksp_converged_reason
>>>>> 
>>>>>> On Sep 26, 2025, at 1:19 PM, Moral Sanchez, Elena 
>>>>>> <[email protected] <mailto:[email protected]>> 
>>>>>> wrote:
>>>>>> 
>>>>>> Dear Barry,
>>>>>> 
>>>>>> This is -ksp_view for the smoother at the finest level:
>>>>>> KSP Object: (mg_levels_1_) 1 MPI process
>>>>>>   type: cg
>>>>>>     variant HERMITIAN
>>>>>>   maximum iterations=10, nonzero initial guess
>>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>   left preconditioning
>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>> PC Object: (mg_levels_1_) 1 MPI process
>>>>>>   type: none
>>>>>>   linear system matrix = precond matrix:
>>>>>>   Mat Object: 1 MPI process
>>>>>>     type: python
>>>>>>     rows=524, cols=524
>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>> And at the coarsest level:
>>>>>> KSP Object: (mg_coarse_) 1 MPI process
>>>>>>   type: cg
>>>>>>     variant HERMITIAN
>>>>>>   maximum iterations=100, initial guess is zero
>>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>   left preconditioning
>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>> PC Object: (mg_coarse_) 1 MPI process
>>>>>>   type: none
>>>>>>   linear system matrix = precond matrix:
>>>>>>   Mat Object: 1 MPI process
>>>>>>     type: python
>>>>>>     rows=344, cols=344
>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>> And for the whole solver:
>>>>>> KSP Object: 1 MPI process
>>>>>>   type: cg
>>>>>>     variant HERMITIAN
>>>>>>   maximum iterations=100, nonzero initial guess
>>>>>>   tolerances: relative=1e-08, absolute=1e-09, divergence=10000.
>>>>>>   left preconditioning
>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>> PC Object: 1 MPI process
>>>>>>   type: mg
>>>>>>     type is MULTIPLICATIVE, levels=2 cycles=v
>>>>>>       Cycles per PCApply=1
>>>>>>       Not using Galerkin computed coarse grid matrices
>>>>>>   Coarse grid solver -- level 0 -------------------------------
>>>>>>     KSP Object: (mg_coarse_) 1 MPI process
>>>>>>       type: cg
>>>>>>         variant HERMITIAN
>>>>>>       maximum iterations=100, initial guess is zero
>>>>>>       tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>       left preconditioning
>>>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>>>     PC Object: (mg_coarse_) 1 MPI process
>>>>>>       type: none
>>>>>>       linear system matrix = precond matrix:
>>>>>>       Mat Object: 1 MPI process
>>>>>>         type: python
>>>>>>         rows=344, cols=344
>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>   Down solver (pre-smoother) on level 1 -------------------------------
>>>>>>     KSP Object: (mg_levels_1_) 1 MPI process
>>>>>>       type: cg
>>>>>>         variant HERMITIAN
>>>>>>       maximum iterations=10, nonzero initial guess
>>>>>>       tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>       left preconditioning
>>>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>>>     PC Object: (mg_levels_1_) 1 MPI process
>>>>>>       type: none
>>>>>>       linear system matrix = precond matrix:
>>>>>>       Mat Object: 1 MPI process
>>>>>>         type: python
>>>>>>         rows=524, cols=524
>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>   Up solver (post-smoother) same as down solver (pre-smoother)
>>>>>>   linear system matrix = precond matrix:
>>>>>>   Mat Object: 1 MPI process
>>>>>>     type: python
>>>>>>     rows=524, cols=524
>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>> Best,
>>>>>> Elena
>>>>>> 
>>>>>>   
>>>>>> From: Barry Smith <[email protected] <mailto:[email protected]>>
>>>>>> Sent: 26 September 2025 19:05:02
>>>>>> To: Moral Sanchez, Elena
>>>>>> Cc: [email protected] <mailto:[email protected]>
>>>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG 
>>>>>> at the finest level
>>>>>>  
>>>>>>   
>>>>>> Send the output using -ksp_view 
>>>>>> 
>>>>>> Normally one uses a fixed number of iterations of smoothing  on level 
>>>>>> with multigrid rather than a tolerance, but yes PETSc should respect 
>>>>>> such a tolerance.
>>>>>> 
>>>>>> Barry
>>>>>> 
>>>>>> 
>>>>>>> On Sep 26, 2025, at 12:49 PM, Moral Sanchez, Elena 
>>>>>>> <[email protected] 
>>>>>>> <mailto:[email protected]>> wrote:
>>>>>>> 
>>>>>>> Hi, 
>>>>>>> I am using multigrid (multiplicative) as a preconditioner with a 
>>>>>>> V-cycle of two levels. At each level, I am setting CG as the smoother 
>>>>>>> with certain tolerance.
>>>>>>> 
>>>>>>> What I observe is that in the finest level the CG continues iterating 
>>>>>>> after the residual norm reaches the tolerance (atol) and it only stops 
>>>>>>> when reaching the maximum number of iterations at that level. At the 
>>>>>>> coarsest level this does not occur and the CG stops when the tolerance 
>>>>>>> is reached.
>>>>>>> 
>>>>>>> I double-checked that the smoother at the finest level has the right 
>>>>>>> tolerance. And I am using a Monitor function to track the residual.
>>>>>>> 
>>>>>>> Do you know how to make the smoother at the finest level stop when 
>>>>>>> reaching the tolerance?
>>>>>>> 
>>>>>>> Cheers,
>>>>>>> Elena.

Reply via email to