I have to apologize again. What you are doing is so out of the ordinary (but 
there is nothing wrong with you doing it) that I totally lost this line of code

 PetscCall(KSPSetConvergenceTest(mglevels[i]->smoothd, KSPConvergedSkip, NULL, 
NULL));

Please try the following, add the options

 -mg_levels_ksp_convergence_test default -mg_levels_ksp_norm_type 
unpreconditioned

Barry






> On Oct 7, 2025, at 4:12 AM, Moral Sanchez, Elena 
> <[email protected]> wrote:
> 
> The problem is that the fine grid solver is iterating past the prescribed 
> tolerance. It iterates until the maximum number of iterations has been 
> achieved. 
> 
> Elena
> 
> From: Mark Adams <[email protected] <mailto:[email protected]>>
> Sent: 01 October 2025 13:25:14
> To: Barry Smith
> Cc: Moral Sanchez, Elena; petsc-users
> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG at 
> the finest level
>  
> Sorry to jump in, but what is the problem here? This looks fine to me, other 
> than the coarse grid solver that I mentioned.
> 
> On Tue, Sep 30, 2025 at 9:27 AM Barry Smith <[email protected] 
> <mailto:[email protected]>> wrote:
>> 
>>   Would you be able to share your code? I'm at a loss as to why we are 
>> seeing this behavior and can much more quickly figure it out by running the 
>> code in a debugger.
>> 
>>    Barry
>> 
>> You can send the code [email protected] 
>> <mailto:[email protected]> if you don't want to share the code with 
>> everyone,
>> 
>>> On Sep 30, 2025, at 5:05 AM, Moral Sanchez, Elena 
>>> <[email protected] <mailto:[email protected]>> 
>>> wrote:
>>> 
>>> This is what I get:
>>>     Residual norms for mg_levels_1_ solve.
>>>     0 KSP Residual norm 2.249726733143e+00
>>>     Residual norms for mg_levels_1_ solve.
>>>     0 KSP unpreconditioned resid norm 2.249726733143e+00 true resid norm 
>>> 2.249726733143e+00 ||r(i)||/||b|| 1.000000000000e+00
>>>     1 KSP Residual norm 1.433120400946e+00
>>>     1 KSP unpreconditioned resid norm 1.433120400946e+00 true resid norm 
>>> 1.433120400946e+00 ||r(i)||/||b|| 6.370197677051e-01
>>>     2 KSP Residual norm 1.169262560123e+00
>>>     2 KSP unpreconditioned resid norm 1.169262560123e+00 true resid norm 
>>> 1.169262560123e+00 ||r(i)||/||b|| 5.197353718108e-01
>>>     3 KSP Residual norm 1.323528716607e+00
>>>     3 KSP unpreconditioned resid norm 1.323528716607e+00 true resid norm 
>>> 1.323528716607e+00 ||r(i)||/||b|| 5.883064361148e-01
>>>     4 KSP Residual norm 5.006323254234e-01
>>>     4 KSP unpreconditioned resid norm 5.006323254234e-01 true resid norm 
>>> 5.006323254234e-01 ||r(i)||/||b|| 2.225302824775e-01
>>>     5 KSP Residual norm 3.569836784785e-01
>>>     5 KSP unpreconditioned resid norm 3.569836784785e-01 true resid norm 
>>> 3.569836784785e-01 ||r(i)||/||b|| 1.586786844906e-01
>>>     6 KSP Residual norm 2.493182937513e-01
>>>     6 KSP unpreconditioned resid norm 2.493182937513e-01 true resid norm 
>>> 2.493182937513e-01 ||r(i)||/||b|| 1.108215900529e-01
>>>     7 KSP Residual norm 3.038202502298e-01
>>>     7 KSP unpreconditioned resid norm 3.038202502298e-01 true resid norm 
>>> 3.038202502298e-01 ||r(i)||/||b|| 1.350476241198e-01
>>>     8 KSP Residual norm 2.780214194402e-01
>>>     8 KSP unpreconditioned resid norm 2.780214194402e-01 true resid norm 
>>> 2.780214194402e-01 ||r(i)||/||b|| 1.235800843473e-01
>>>     9 KSP Residual norm 1.676826341491e-01
>>>     9 KSP unpreconditioned resid norm 1.676826341491e-01 true resid norm 
>>> 1.676826341491e-01 ||r(i)||/||b|| 7.453466755710e-02
>>>    10 KSP Residual norm 1.209985378713e-01
>>>    10 KSP unpreconditioned resid norm 1.209985378713e-01 true resid norm 
>>> 1.209985378713e-01 ||r(i)||/||b|| 5.378366007245e-02
>>>    11 KSP Residual norm 9.445076689969e-02
>>>    11 KSP unpreconditioned resid norm 9.445076689969e-02 true resid norm 
>>> 9.445076689969e-02 ||r(i)||/||b|| 4.198321756516e-02
>>>    12 KSP Residual norm 8.308555284580e-02
>>>    12 KSP unpreconditioned resid norm 8.308555284580e-02 true resid norm 
>>> 8.308555284580e-02 ||r(i)||/||b|| 3.693139776569e-02
>>>    13 KSP Residual norm 5.472865592585e-02
>>>    13 KSP unpreconditioned resid norm 5.472865592585e-02 true resid norm 
>>> 5.472865592585e-02 ||r(i)||/||b|| 2.432680161532e-02
>>>    14 KSP Residual norm 4.357870564398e-02
>>>    14 KSP unpreconditioned resid norm 4.357870564398e-02 true resid norm 
>>> 4.357870564398e-02 ||r(i)||/||b|| 1.937066622447e-02
>>>    15 KSP Residual norm 5.079681292439e-02
>>>    15 KSP unpreconditioned resid norm 5.079681292439e-02 true resid norm 
>>> 5.079681292439e-02 ||r(i)||/||b|| 2.257910357558e-02
>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>     Residual norms for mg_levels_1_ solve.
>>>     0 KSP Residual norm 5.079681292439e-02
>>>     Residual norms for mg_levels_1_ solve.
>>>     0 KSP unpreconditioned resid norm 5.079681292439e-02 true resid norm 
>>> 5.079681292439e-02 ||r(i)||/||b|| 2.257910357559e-02
>>>     1 KSP Residual norm 2.934938644003e-02
>>>     1 KSP unpreconditioned resid norm 2.934938644003e-02 true resid norm 
>>> 2.934938644003e-02 ||r(i)||/||b|| 1.304575618348e-02
>>>     2 KSP Residual norm 3.257065831294e-02
>>>     2 KSP unpreconditioned resid norm 3.257065831294e-02 true resid norm 
>>> 3.257065831294e-02 ||r(i)||/||b|| 1.447760647243e-02
>>>     3 KSP Residual norm 4.143063876867e-02
>>>     3 KSP unpreconditioned resid norm 4.143063876867e-02 true resid norm 
>>> 4.143063876867e-02 ||r(i)||/||b|| 1.841585387164e-02
>>>     4 KSP Residual norm 4.822471409489e-02
>>>     4 KSP unpreconditioned resid norm 4.822471409489e-02 true resid norm 
>>> 4.822471409489e-02 ||r(i)||/||b|| 2.143580968499e-02
>>>     5 KSP Residual norm 3.197538246153e-02
>>>     5 KSP unpreconditioned resid norm 3.197538246153e-02 true resid norm 
>>> 3.197538246153e-02 ||r(i)||/||b|| 1.421300729127e-02
>>>     6 KSP Residual norm 3.461217019835e-02
>>>     6 KSP unpreconditioned resid norm 3.461217019835e-02 true resid norm 
>>> 3.461217019835e-02 ||r(i)||/||b|| 1.538505529958e-02
>>>     7 KSP Residual norm 3.410193775327e-02
>>>     7 KSP unpreconditioned resid norm 3.410193775327e-02 true resid norm 
>>> 3.410193775327e-02 ||r(i)||/||b|| 1.515825777899e-02
>>>     8 KSP Residual norm 4.690424294464e-02
>>>     8 KSP unpreconditioned resid norm 4.690424294464e-02 true resid norm 
>>> 4.690424294464e-02 ||r(i)||/||b|| 2.084886233233e-02
>>>     9 KSP Residual norm 3.366148892800e-02
>>>     9 KSP unpreconditioned resid norm 3.366148892800e-02 true resid norm 
>>> 3.366148892800e-02 ||r(i)||/||b|| 1.496247896783e-02
>>>    10 KSP Residual norm 4.068015727689e-02
>>>    10 KSP unpreconditioned resid norm 4.068015727689e-02 true resid norm 
>>> 4.068015727689e-02 ||r(i)||/||b|| 1.808226602707e-02
>>>    11 KSP Residual norm 2.658836123104e-02
>>>    11 KSP unpreconditioned resid norm 2.658836123104e-02 true resid norm 
>>> 2.658836123104e-02 ||r(i)||/||b|| 1.181848481389e-02
>>>    12 KSP Residual norm 2.826244186003e-02
>>>    12 KSP unpreconditioned resid norm 2.826244186003e-02 true resid norm 
>>> 2.826244186003e-02 ||r(i)||/||b|| 1.256261102456e-02
>>>    13 KSP Residual norm 2.981793619508e-02
>>>    13 KSP unpreconditioned resid norm 2.981793619508e-02 true resid norm 
>>> 2.981793619508e-02 ||r(i)||/||b|| 1.325402581380e-02
>>>    14 KSP Residual norm 3.525455091450e-02
>>>    14 KSP unpreconditioned resid norm 3.525455091450e-02 true resid norm 
>>> 3.525455091450e-02 ||r(i)||/||b|| 1.567059251914e-02
>>>    15 KSP Residual norm 2.331539121838e-02
>>>    15 KSP unpreconditioned resid norm 2.331539121838e-02 true resid norm 
>>> 2.331539121838e-02 ||r(i)||/||b|| 1.036365478300e-02
>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>     Residual norms for mg_levels_1_ solve.
>>>     0 KSP Residual norm 2.421498365806e-02
>>>     Residual norms for mg_levels_1_ solve.
>>>     0 KSP unpreconditioned resid norm 2.421498365806e-02 true resid norm 
>>> 2.421498365806e-02 ||r(i)||/||b|| 1.000000000000e+00
>>>     1 KSP Residual norm 1.761072112362e-02
>>>     1 KSP unpreconditioned resid norm 1.761072112362e-02 true resid norm 
>>> 1.761072112362e-02 ||r(i)||/||b|| 7.272654556492e-01
>>>     2 KSP Residual norm 1.400842489042e-02
>>>     2 KSP unpreconditioned resid norm 1.400842489042e-02 true resid norm 
>>> 1.400842489042e-02 ||r(i)||/||b|| 5.785023474818e-01
>>>     3 KSP Residual norm 1.419665483348e-02
>>>     3 KSP unpreconditioned resid norm 1.419665483348e-02 true resid norm 
>>> 1.419665483348e-02 ||r(i)||/||b|| 5.862756314004e-01
>>>     4 KSP Residual norm 1.617590701667e-02
>>>     4 KSP unpreconditioned resid norm 1.617590701667e-02 true resid norm 
>>> 1.617590701667e-02 ||r(i)||/||b|| 6.680123036665e-01
>>>     5 KSP Residual norm 1.354824081005e-02
>>>     5 KSP unpreconditioned resid norm 1.354824081005e-02 true resid norm 
>>> 1.354824081005e-02 ||r(i)||/||b|| 5.594982429624e-01
>>>     6 KSP Residual norm 1.387252917475e-02
>>>     6 KSP unpreconditioned resid norm 1.387252917475e-02 true resid norm 
>>> 1.387252917475e-02 ||r(i)||/||b|| 5.728902967950e-01
>>>     7 KSP Residual norm 1.514043102087e-02
>>>     7 KSP unpreconditioned resid norm 1.514043102087e-02 true resid norm 
>>> 1.514043102087e-02 ||r(i)||/||b|| 6.252505157414e-01
>>>     8 KSP Residual norm 1.275811124745e-02
>>>     8 KSP unpreconditioned resid norm 1.275811124745e-02 true resid norm 
>>> 1.275811124745e-02 ||r(i)||/||b|| 5.268684640721e-01
>>>     9 KSP Residual norm 1.241039155981e-02
>>>     9 KSP unpreconditioned resid norm 1.241039155981e-02 true resid norm 
>>> 1.241039155981e-02 ||r(i)||/||b|| 5.125087728764e-01
>>>    10 KSP Residual norm 9.585207801652e-03
>>>    10 KSP unpreconditioned resid norm 9.585207801652e-03 true resid norm 
>>> 9.585207801652e-03 ||r(i)||/||b|| 3.958378802565e-01
>>>    11 KSP Residual norm 9.022641230732e-03
>>>    11 KSP unpreconditioned resid norm 9.022641230732e-03 true resid norm 
>>> 9.022641230732e-03 ||r(i)||/||b|| 3.726057121550e-01
>>>    12 KSP Residual norm 1.187709152046e-02
>>>    12 KSP unpreconditioned resid norm 1.187709152046e-02 true resid norm 
>>> 1.187709152046e-02 ||r(i)||/||b|| 4.904852172597e-01
>>>    13 KSP Residual norm 1.084880112494e-02
>>>    13 KSP unpreconditioned resid norm 1.084880112494e-02 true resid norm 
>>> 1.084880112494e-02 ||r(i)||/||b|| 4.480201712351e-01
>>>    14 KSP Residual norm 8.194750346781e-03
>>>    14 KSP unpreconditioned resid norm 8.194750346781e-03 true resid norm 
>>> 8.194750346781e-03 ||r(i)||/||b|| 3.384165136140e-01
>>>    15 KSP Residual norm 7.614246199165e-03
>>>    15 KSP unpreconditioned resid norm 7.614246199165e-03 true resid norm 
>>> 7.614246199165e-03 ||r(i)||/||b|| 3.144435819857e-01
>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>     Residual norms for mg_levels_1_ solve.
>>>     0 KSP Residual norm 7.614246199165e-03
>>>     Residual norms for mg_levels_1_ solve.
>>>     0 KSP unpreconditioned resid norm 7.614246199165e-03 true resid norm 
>>> 7.614246199165e-03 ||r(i)||/||b|| 3.144435819857e-01
>>>     1 KSP Residual norm 5.620014684145e-03
>>>     1 KSP unpreconditioned resid norm 5.620014684145e-03 true resid norm 
>>> 5.620014684145e-03 ||r(i)||/||b|| 2.320883120759e-01
>>>     2 KSP Residual norm 6.643368363907e-03
>>>     2 KSP unpreconditioned resid norm 6.643368363907e-03 true resid norm 
>>> 6.643368363907e-03 ||r(i)||/||b|| 2.743494878096e-01
>>>     3 KSP Residual norm 8.708642393659e-03
>>>     3 KSP unpreconditioned resid norm 8.708642393659e-03 true resid norm 
>>> 8.708642393659e-03 ||r(i)||/||b|| 3.596385823189e-01
>>>     4 KSP Residual norm 6.401852907459e-03
>>>     4 KSP unpreconditioned resid norm 6.401852907459e-03 true resid norm 
>>> 6.401852907459e-03 ||r(i)||/||b|| 2.643756856440e-01
>>>     5 KSP Residual norm 7.230576215262e-03
>>>     5 KSP unpreconditioned resid norm 7.230576215262e-03 true resid norm 
>>> 7.230576215262e-03 ||r(i)||/||b|| 2.985992605803e-01
>>>     6 KSP Residual norm 6.204081601285e-03
>>>     6 KSP unpreconditioned resid norm 6.204081601285e-03 true resid norm 
>>> 6.204081601285e-03 ||r(i)||/||b|| 2.562083744880e-01
>>>     7 KSP Residual norm 7.038656665944e-03
>>>     7 KSP unpreconditioned resid norm 7.038656665944e-03 true resid norm 
>>> 7.038656665944e-03 ||r(i)||/||b|| 2.906736079337e-01
>>>     8 KSP Residual norm 7.194079694050e-03
>>>     8 KSP unpreconditioned resid norm 7.194079694050e-03 true resid norm 
>>> 7.194079694050e-03 ||r(i)||/||b|| 2.970920730585e-01
>>>     9 KSP Residual norm 6.353576889135e-03
>>>     9 KSP unpreconditioned resid norm 6.353576889135e-03 true resid norm 
>>> 6.353576889135e-03 ||r(i)||/||b|| 2.623820432363e-01
>>>    10 KSP Residual norm 7.313589502731e-03
>>>    10 KSP unpreconditioned resid norm 7.313589502731e-03 true resid norm 
>>> 7.313589502731e-03 ||r(i)||/||b|| 3.020274391264e-01
>>>    11 KSP Residual norm 6.643320423193e-03
>>>    11 KSP unpreconditioned resid norm 6.643320423193e-03 true resid norm 
>>> 6.643320423193e-03 ||r(i)||/||b|| 2.743475080142e-01
>>>    12 KSP Residual norm 7.235443182108e-03
>>>    12 KSP unpreconditioned resid norm 7.235443182108e-03 true resid norm 
>>> 7.235443182108e-03 ||r(i)||/||b|| 2.988002504681e-01
>>>    13 KSP Residual norm 4.971292307201e-03
>>>    13 KSP unpreconditioned resid norm 4.971292307201e-03 true resid norm 
>>> 4.971292307201e-03 ||r(i)||/||b|| 2.052981896416e-01
>>>    14 KSP Residual norm 5.357933842147e-03
>>>    14 KSP unpreconditioned resid norm 5.357933842147e-03 true resid norm 
>>> 5.357933842147e-03 ||r(i)||/||b|| 2.212652264320e-01
>>>    15 KSP Residual norm 5.841682994497e-03
>>>    15 KSP unpreconditioned resid norm 5.841682994497e-03 true resid norm 
>>> 5.841682994497e-03 ||r(i)||/||b|| 2.412424917146e-01
>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>> Cheers,
>>> Elena
>>> From: Barry Smith <[email protected] <mailto:[email protected]>>
>>> Sent: 29 September 2025 20:31:26
>>> To: Moral Sanchez, Elena
>>> Cc: Mark Adams; petsc-users
>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG at 
>>> the finest level
>>>  
>>> 
>>>   Thanks. I missed something earlier in the KSPView
>>> 
>>>>> using UNPRECONDITIONED norm type for convergence test
>>> 
>>> Please add the options 
>>> 
>>>>>>> -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual 
>>> 
>>> It is using the unpreconditioned residual norms for convergence testing but 
>>> we are printing the preconditioned norms.
>>> 
>>> Barry
>>> 
>>> 
>>>> On Sep 29, 2025, at 11:12 AM, Moral Sanchez, Elena 
>>>> <[email protected] <mailto:[email protected]>> 
>>>> wrote:
>>>> 
>>>> This is the output:
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP Residual norm 2.249726733143e+00
>>>>     1 KSP Residual norm 1.433120400946e+00
>>>>     2 KSP Residual norm 1.169262560123e+00
>>>>     3 KSP Residual norm 1.323528716607e+00
>>>>     4 KSP Residual norm 5.006323254234e-01
>>>>     5 KSP Residual norm 3.569836784785e-01
>>>>     6 KSP Residual norm 2.493182937513e-01
>>>>     7 KSP Residual norm 3.038202502298e-01
>>>>     8 KSP Residual norm 2.780214194402e-01
>>>>     9 KSP Residual norm 1.676826341491e-01
>>>>    10 KSP Residual norm 1.209985378713e-01
>>>>    11 KSP Residual norm 9.445076689969e-02
>>>>    12 KSP Residual norm 8.308555284580e-02
>>>>    13 KSP Residual norm 5.472865592585e-02
>>>>    14 KSP Residual norm 4.357870564398e-02
>>>>    15 KSP Residual norm 5.079681292439e-02
>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP Residual norm 5.079681292439e-02
>>>>     1 KSP Residual norm 2.934938644003e-02
>>>>     2 KSP Residual norm 3.257065831294e-02
>>>>     3 KSP Residual norm 4.143063876867e-02
>>>>     4 KSP Residual norm 4.822471409489e-02
>>>>     5 KSP Residual norm 3.197538246153e-02
>>>>     6 KSP Residual norm 3.461217019835e-02
>>>>     7 KSP Residual norm 3.410193775327e-02
>>>>     8 KSP Residual norm 4.690424294464e-02
>>>>     9 KSP Residual norm 3.366148892800e-02
>>>>    10 KSP Residual norm 4.068015727689e-02
>>>>    11 KSP Residual norm 2.658836123104e-02
>>>>    12 KSP Residual norm 2.826244186003e-02
>>>>    13 KSP Residual norm 2.981793619508e-02
>>>>    14 KSP Residual norm 3.525455091450e-02
>>>>    15 KSP Residual norm 2.331539121838e-02
>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP Residual norm 2.421498365806e-02
>>>>     1 KSP Residual norm 1.761072112362e-02
>>>>     2 KSP Residual norm 1.400842489042e-02
>>>>     3 KSP Residual norm 1.419665483348e-02
>>>>     4 KSP Residual norm 1.617590701667e-02
>>>>     5 KSP Residual norm 1.354824081005e-02
>>>>     6 KSP Residual norm 1.387252917475e-02
>>>>     7 KSP Residual norm 1.514043102087e-02
>>>>     8 KSP Residual norm 1.275811124745e-02
>>>>     9 KSP Residual norm 1.241039155981e-02
>>>>    10 KSP Residual norm 9.585207801652e-03
>>>>    11 KSP Residual norm 9.022641230732e-03
>>>>    12 KSP Residual norm 1.187709152046e-02
>>>>    13 KSP Residual norm 1.084880112494e-02
>>>>    14 KSP Residual norm 8.194750346781e-03
>>>>    15 KSP Residual norm 7.614246199165e-03
>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP Residual norm 7.614246199165e-03
>>>>     1 KSP Residual norm 5.620014684145e-03
>>>>     2 KSP Residual norm 6.643368363907e-03
>>>>     3 KSP Residual norm 8.708642393659e-03
>>>>     4 KSP Residual norm 6.401852907459e-03
>>>>     5 KSP Residual norm 7.230576215262e-03
>>>>     6 KSP Residual norm 6.204081601285e-03
>>>>     7 KSP Residual norm 7.038656665944e-03
>>>>     8 KSP Residual norm 7.194079694050e-03
>>>>     9 KSP Residual norm 6.353576889135e-03
>>>>    10 KSP Residual norm 7.313589502731e-03
>>>>    11 KSP Residual norm 6.643320423193e-03
>>>>    12 KSP Residual norm 7.235443182108e-03
>>>>    13 KSP Residual norm 4.971292307201e-03
>>>>    14 KSP Residual norm 5.357933842147e-03
>>>>    15 KSP Residual norm 5.841682994497e-03
>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>> 
>>>> From: Barry Smith <[email protected] <mailto:[email protected]>>
>>>> Sent: 29 September 2025 15:56:33
>>>> To: Moral Sanchez, Elena
>>>> Cc: Mark Adams; petsc-users
>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG 
>>>> at the finest level
>>>>  
>>>> 
>>>>   I asked you to run with 
>>>> 
>>>>>>>  -ksp_monitor -mg_levels_ksp_monitor -ksp_converged_reason 
>>>>>>> -mg_levels_ksp_converged_reason
>>>> 
>>>> you chose not to, delaying the process of understanding what is happening.
>>>> 
>>>>   Please run with those options and send the output. My guess is that you 
>>>> are computing the "residual norms" in your own monitor code, and it is 
>>>> doing so differently than what PETSc does, thus resulting in the 
>>>> appearance of a sufficiently small residual norm, whereas PETSc may not 
>>>> have calculated something that small.
>>>> 
>>>> Barry
>>>> 
>>>> 
>>>>> On Sep 29, 2025, at 8:39 AM, Moral Sanchez, Elena 
>>>>> <[email protected] <mailto:[email protected]>> 
>>>>> wrote:
>>>>> 
>>>>> Thanks for the hint. I agree that the coarse solve should be much more 
>>>>> "accurate". However, for the moment I am just trying to understand what 
>>>>> the MG is doing exactly. 
>>>>> 
>>>>> I am puzzled to see that the fine grid smoother ("lvl 0") does not stop 
>>>>> when the residual becomes less than 1e-1. It should converge due to the 
>>>>> atol. 
>>>>> 
>>>>> From: Mark Adams <[email protected] <mailto:[email protected]>>
>>>>> Sent: 29 September 2025 14:20:56
>>>>> To: Moral Sanchez, Elena
>>>>> Cc: Barry Smith; petsc-users
>>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG 
>>>>> at the finest level
>>>>>  
>>>>> Oh I see the coarse grid solver in your full solver output now.
>>>>> You still want an accurate coarse grid solve. Usually (the default in 
>>>>> GAMG) you use a direct solver on one process, and cousin until the coarse 
>>>>> grid is small enough to make that cheap.
>>>>> 
>>>>> On Mon, Sep 29, 2025 at 8:07 AM Moral Sanchez, Elena 
>>>>> <[email protected] <mailto:[email protected]>> 
>>>>> wrote:
>>>>>> Hi, I doubled the system size and changed the tolerances just to show a 
>>>>>> better example of the problem. This is the output of the callbacks in 
>>>>>> the first iteration:
>>>>>>     CG Iter 0/1 | res = 2.25e+00/1.00e-09 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 2.25e+00/1.00e-01 | 0.3 s
>>>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 1.43e+00/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 1.17e+00/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 1.32e+00/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 5.01e-01/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 3.57e-01/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 2.49e-01/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 3.04e-01/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 2.78e-01/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 1.68e-01/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 1.21e-01/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 9.45e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 8.31e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 5.47e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 4.36e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 5.08e-02/1.00e-01 | 0.1 s
>>>>>>         ConvergedReason MG lvl 0: 4
>>>>>>         MG lvl -1 (s=524): CG Iter 0/15 | res = 8.15e-02/1.00e-01 | 3.0 s
>>>>>>         ConvergedReason MG lvl -1: 3
>>>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 5.08e-02/1.00e-01 | 0.3 s
>>>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 2.93e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 3.26e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 4.14e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 4.82e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 3.20e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 3.46e-02/1.00e-01 | 0.3 s
>>>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 3.41e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 4.69e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 3.37e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 4.07e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 2.66e-02/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 2.83e-02/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 2.98e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 3.53e-02/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 2.33e-02/1.00e-01 | 0.2 s
>>>>>>         ConvergedReason MG lvl 0: 4
>>>>>>     CG Iter 1/1 | res = 2.42e-02/1.00e-09 | 5.6 s
>>>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 2.42e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 1.76e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 1.40e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 1.42e-02/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 1.62e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 1.35e-02/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 1.39e-02/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 1.51e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 1.28e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 1.24e-02/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 9.59e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 9.02e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 1.19e-02/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 1.08e-02/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 8.19e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 7.61e-03/1.00e-01 | 0.1 s
>>>>>>         ConvergedReason MG lvl 0: 4
>>>>>>         MG lvl -1 (s=524): CG Iter 0/15 | res = 1.38e-02/1.00e-01 | 5.2 s
>>>>>>         ConvergedReason MG lvl -1: 3
>>>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 7.61e-03/1.00e-01 | 0.2 s
>>>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 5.62e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 6.64e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 8.71e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 6.40e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 7.23e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 6.20e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 7.04e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 7.19e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 6.35e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 7.31e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 6.64e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 7.24e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 4.97e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 5.36e-03/1.00e-01 | 0.1 s
>>>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 5.84e-03/1.00e-01 | 0.1 s
>>>>>>         ConvergedReason MG lvl 0: 4    
>>>>>>     CG ConvergedReason: -3 
>>>>>> 
>>>>>> For completeness, I add here the -ksp_view of the whole solver:
>>>>>>     KSP Object: 1 MPI process
>>>>>>       type: cg
>>>>>>         variant HERMITIAN
>>>>>>       maximum iterations=1, nonzero initial guess
>>>>>>       tolerances: relative=1e-08, absolute=1e-09, divergence=10000.
>>>>>>       left preconditioning
>>>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>>>     PC Object: 1 MPI process
>>>>>>       type: mg
>>>>>>         type is MULTIPLICATIVE, levels=2 cycles=v
>>>>>>           Cycles per PCApply=1
>>>>>>           Not using Galerkin computed coarse grid matrices
>>>>>>       Coarse grid solver -- level 0 -------------------------------
>>>>>>         KSP Object: (mg_coarse_) 1 MPI process
>>>>>>           type: cg
>>>>>>         variant HERMITIAN
>>>>>>           maximum iterations=15, nonzero initial guess
>>>>>>           tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>           left preconditioning
>>>>>>           using UNPRECONDITIONED norm type for convergence test
>>>>>>         PC Object: (mg_coarse_) 1 MPI process
>>>>>>           type: none
>>>>>>           linear system matrix = precond matrix:
>>>>>>           Mat Object: 1 MPI process
>>>>>>         type: python
>>>>>>         rows=524, cols=524
>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>       Down solver (pre-smoother) on level 1 
>>>>>> -------------------------------
>>>>>>         KSP Object: (mg_levels_1_) 1 MPI process
>>>>>>           type: cg
>>>>>>         variant HERMITIAN
>>>>>>           maximum iterations=15, nonzero initial guess
>>>>>>           tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>           left preconditioning
>>>>>>           using UNPRECONDITIONED norm type for convergence test
>>>>>>         PC Object: (mg_levels_1_) 1 MPI process
>>>>>>           type: none
>>>>>>           linear system matrix = precond matrix:
>>>>>>           Mat Object: 1 MPI process
>>>>>>         type: python
>>>>>>         rows=884, cols=884
>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>       Up solver (post-smoother) same as down solver (pre-smoother)
>>>>>>       linear system matrix = precond matrix:
>>>>>>       Mat Object: 1 MPI process
>>>>>>         type: python
>>>>>>         rows=884, cols=884
>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>>         
>>>>>> Regarding Mark's Email: What do you mean with "the whole solver doesn't 
>>>>>> have a coarse grid"? I am using my own Restriction and Interpolation 
>>>>>> operators.
>>>>>> Thanks for the help,
>>>>>> Elena
>>>>>> 
>>>>>> From: Mark Adams <[email protected] <mailto:[email protected]>>
>>>>>> Sent: 28 September 2025 20:13:54
>>>>>> To: Barry Smith
>>>>>> Cc: Moral Sanchez, Elena; petsc-users
>>>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG 
>>>>>> at the finest level
>>>>>>  
>>>>>> Not sure why your "whole"solver does not have a coarse grid but this is 
>>>>>> wrong:
>>>>>> 
>>>>>>> KSP Object: (mg_coarse_) 1 MPI process
>>>>>>>   type: cg
>>>>>>>     variant HERMITIAN
>>>>>>>   maximum iterations=100, initial guess is zero
>>>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>> 
>>>>>>> The coarse grid has to be accurate. The defaults are a good place to 
>>>>>>> start: max_it=10.000, rtol=1e-5, atol=1e-30 (ish)
>>>>>> 
>>>>>> On Fri, Sep 26, 2025 at 3:21 PM Barry Smith <[email protected] 
>>>>>> <mailto:[email protected]>> wrote:
>>>>>>>   Looks reasonable. Send the output running with 
>>>>>>> 
>>>>>>>    -ksp_monitor -mg_levels_ksp_monitor -ksp_converged_reason 
>>>>>>> -mg_levels_ksp_converged_reason
>>>>>>> 
>>>>>>>> On Sep 26, 2025, at 1:19 PM, Moral Sanchez, Elena 
>>>>>>>> <[email protected] 
>>>>>>>> <mailto:[email protected]>> wrote:
>>>>>>>> 
>>>>>>>> Dear Barry,
>>>>>>>> 
>>>>>>>> This is -ksp_view for the smoother at the finest level:
>>>>>>>> KSP Object: (mg_levels_1_) 1 MPI process
>>>>>>>>   type: cg
>>>>>>>>     variant HERMITIAN
>>>>>>>>   maximum iterations=10, nonzero initial guess
>>>>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>>   left preconditioning
>>>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>>>> PC Object: (mg_levels_1_) 1 MPI process
>>>>>>>>   type: none
>>>>>>>>   linear system matrix = precond matrix:
>>>>>>>>   Mat Object: 1 MPI process
>>>>>>>>     type: python
>>>>>>>>     rows=524, cols=524
>>>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>>>> And at the coarsest level:
>>>>>>>> KSP Object: (mg_coarse_) 1 MPI process
>>>>>>>>   type: cg
>>>>>>>>     variant HERMITIAN
>>>>>>>>   maximum iterations=100, initial guess is zero
>>>>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>>   left preconditioning
>>>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>>>> PC Object: (mg_coarse_) 1 MPI process
>>>>>>>>   type: none
>>>>>>>>   linear system matrix = precond matrix:
>>>>>>>>   Mat Object: 1 MPI process
>>>>>>>>     type: python
>>>>>>>>     rows=344, cols=344
>>>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>>>> And for the whole solver:
>>>>>>>> KSP Object: 1 MPI process
>>>>>>>>   type: cg
>>>>>>>>     variant HERMITIAN
>>>>>>>>   maximum iterations=100, nonzero initial guess
>>>>>>>>   tolerances: relative=1e-08, absolute=1e-09, divergence=10000.
>>>>>>>>   left preconditioning
>>>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>>>> PC Object: 1 MPI process
>>>>>>>>   type: mg
>>>>>>>>     type is MULTIPLICATIVE, levels=2 cycles=v
>>>>>>>>       Cycles per PCApply=1
>>>>>>>>       Not using Galerkin computed coarse grid matrices
>>>>>>>>   Coarse grid solver -- level 0 -------------------------------
>>>>>>>>     KSP Object: (mg_coarse_) 1 MPI process
>>>>>>>>       type: cg
>>>>>>>>         variant HERMITIAN
>>>>>>>>       maximum iterations=100, initial guess is zero
>>>>>>>>       tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>>       left preconditioning
>>>>>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>>>>>     PC Object: (mg_coarse_) 1 MPI process
>>>>>>>>       type: none
>>>>>>>>       linear system matrix = precond matrix:
>>>>>>>>       Mat Object: 1 MPI process
>>>>>>>>         type: python
>>>>>>>>         rows=344, cols=344
>>>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>>>   Down solver (pre-smoother) on level 1 -------------------------------
>>>>>>>>     KSP Object: (mg_levels_1_) 1 MPI process
>>>>>>>>       type: cg
>>>>>>>>         variant HERMITIAN
>>>>>>>>       maximum iterations=10, nonzero initial guess
>>>>>>>>       tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>>       left preconditioning
>>>>>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>>>>>     PC Object: (mg_levels_1_) 1 MPI process
>>>>>>>>       type: none
>>>>>>>>       linear system matrix = precond matrix:
>>>>>>>>       Mat Object: 1 MPI process
>>>>>>>>         type: python
>>>>>>>>         rows=524, cols=524
>>>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>>>   Up solver (post-smoother) same as down solver (pre-smoother)
>>>>>>>>   linear system matrix = precond matrix:
>>>>>>>>   Mat Object: 1 MPI process
>>>>>>>>     type: python
>>>>>>>>     rows=524, cols=524
>>>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>>>> Best,
>>>>>>>> Elena
>>>>>>>> 
>>>>>>>>   
>>>>>>>> From: Barry Smith <[email protected] <mailto:[email protected]>>
>>>>>>>> Sent: 26 September 2025 19:05:02
>>>>>>>> To: Moral Sanchez, Elena
>>>>>>>> Cc: [email protected] <mailto:[email protected]>
>>>>>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother 
>>>>>>>> CG at the finest level
>>>>>>>>  
>>>>>>>>   
>>>>>>>> Send the output using -ksp_view 
>>>>>>>> 
>>>>>>>> Normally one uses a fixed number of iterations of smoothing  on level 
>>>>>>>> with multigrid rather than a tolerance, but yes PETSc should respect 
>>>>>>>> such a tolerance.
>>>>>>>> 
>>>>>>>> Barry
>>>>>>>> 
>>>>>>>> 
>>>>>>>>> On Sep 26, 2025, at 12:49 PM, Moral Sanchez, Elena 
>>>>>>>>> <[email protected] 
>>>>>>>>> <mailto:[email protected]>> wrote:
>>>>>>>>> 
>>>>>>>>> Hi, 
>>>>>>>>> I am using multigrid (multiplicative) as a preconditioner with a 
>>>>>>>>> V-cycle of two levels. At each level, I am setting CG as the smoother 
>>>>>>>>> with certain tolerance.
>>>>>>>>> 
>>>>>>>>> What I observe is that in the finest level the CG continues iterating 
>>>>>>>>> after the residual norm reaches the tolerance (atol) and it only 
>>>>>>>>> stops when reaching the maximum number of iterations at that level. 
>>>>>>>>> At the coarsest level this does not occur and the CG stops when the 
>>>>>>>>> tolerance is reached.
>>>>>>>>> 
>>>>>>>>> I double-checked that the smoother at the finest level has the right 
>>>>>>>>> tolerance. And I am using a Monitor function to track the residual.
>>>>>>>>> 
>>>>>>>>> Do you know how to make the smoother at the finest level stop when 
>>>>>>>>> reaching the tolerance?
>>>>>>>>> 
>>>>>>>>> Cheers,
>>>>>>>>> Elena.

Reply via email to