Elana,

    Were you able to try the options below?

    Thanks for reporting the problem, since this is a problem others will face 
I have attempted to update/fix the PETSc code to make it absolutely clear when 
no convergence testing is done with 
https://urldefense.us/v3/__https://gitlab.com/petsc/petsc/-/merge_requests/8777__;!!G_uCfscf7eWS!cBKXt0ucAIZvI8HD3NFbO2mlaAdzaq8mXJAxfoKCfdA7c7UuepziIB8b5w2WRgc--hWKMr9KCgbyr_iua55hPIU$
 

  Barry


> On Oct 7, 2025, at 10:53 AM, Barry Smith <[email protected]> wrote:
> 
> 
>   I have to apologize again. What you are doing is so out of the ordinary 
> (but there is nothing wrong with you doing it) that I totally lost this line 
> of code
> 
>  PetscCall(KSPSetConvergenceTest(mglevels[i]->smoothd, KSPConvergedSkip, 
> NULL, NULL));
> 
> Please try the following, add the options
> 
>  -mg_levels_ksp_convergence_test default -mg_levels_ksp_norm_type 
> unpreconditioned
> 
> Barry
> 
> 
> 
> 
> 
> 
>> On Oct 7, 2025, at 4:12 AM, Moral Sanchez, Elena 
>> <[email protected]> wrote:
>> 
>> The problem is that the fine grid solver is iterating past the prescribed 
>> tolerance. It iterates until the maximum number of iterations has been 
>> achieved. 
>> 
>> Elena
>> 
>> From: Mark Adams <[email protected] <mailto:[email protected]>>
>> Sent: 01 October 2025 13:25:14
>> To: Barry Smith
>> Cc: Moral Sanchez, Elena; petsc-users
>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG at 
>> the finest level
>>  
>> Sorry to jump in, but what is the problem here? This looks fine to me, other 
>> than the coarse grid solver that I mentioned.
>> 
>> On Tue, Sep 30, 2025 at 9:27 AM Barry Smith <[email protected] 
>> <mailto:[email protected]>> wrote:
>>> 
>>>   Would you be able to share your code? I'm at a loss as to why we are 
>>> seeing this behavior and can much more quickly figure it out by running the 
>>> code in a debugger.
>>> 
>>>    Barry
>>> 
>>> You can send the code [email protected] 
>>> <mailto:[email protected]> if you don't want to share the code with 
>>> everyone,
>>> 
>>>> On Sep 30, 2025, at 5:05 AM, Moral Sanchez, Elena 
>>>> <[email protected] <mailto:[email protected]>> 
>>>> wrote:
>>>> 
>>>> This is what I get:
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP Residual norm 2.249726733143e+00
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP unpreconditioned resid norm 2.249726733143e+00 true resid norm 
>>>> 2.249726733143e+00 ||r(i)||/||b|| 1.000000000000e+00
>>>>     1 KSP Residual norm 1.433120400946e+00
>>>>     1 KSP unpreconditioned resid norm 1.433120400946e+00 true resid norm 
>>>> 1.433120400946e+00 ||r(i)||/||b|| 6.370197677051e-01
>>>>     2 KSP Residual norm 1.169262560123e+00
>>>>     2 KSP unpreconditioned resid norm 1.169262560123e+00 true resid norm 
>>>> 1.169262560123e+00 ||r(i)||/||b|| 5.197353718108e-01
>>>>     3 KSP Residual norm 1.323528716607e+00
>>>>     3 KSP unpreconditioned resid norm 1.323528716607e+00 true resid norm 
>>>> 1.323528716607e+00 ||r(i)||/||b|| 5.883064361148e-01
>>>>     4 KSP Residual norm 5.006323254234e-01
>>>>     4 KSP unpreconditioned resid norm 5.006323254234e-01 true resid norm 
>>>> 5.006323254234e-01 ||r(i)||/||b|| 2.225302824775e-01
>>>>     5 KSP Residual norm 3.569836784785e-01
>>>>     5 KSP unpreconditioned resid norm 3.569836784785e-01 true resid norm 
>>>> 3.569836784785e-01 ||r(i)||/||b|| 1.586786844906e-01
>>>>     6 KSP Residual norm 2.493182937513e-01
>>>>     6 KSP unpreconditioned resid norm 2.493182937513e-01 true resid norm 
>>>> 2.493182937513e-01 ||r(i)||/||b|| 1.108215900529e-01
>>>>     7 KSP Residual norm 3.038202502298e-01
>>>>     7 KSP unpreconditioned resid norm 3.038202502298e-01 true resid norm 
>>>> 3.038202502298e-01 ||r(i)||/||b|| 1.350476241198e-01
>>>>     8 KSP Residual norm 2.780214194402e-01
>>>>     8 KSP unpreconditioned resid norm 2.780214194402e-01 true resid norm 
>>>> 2.780214194402e-01 ||r(i)||/||b|| 1.235800843473e-01
>>>>     9 KSP Residual norm 1.676826341491e-01
>>>>     9 KSP unpreconditioned resid norm 1.676826341491e-01 true resid norm 
>>>> 1.676826341491e-01 ||r(i)||/||b|| 7.453466755710e-02
>>>>    10 KSP Residual norm 1.209985378713e-01
>>>>    10 KSP unpreconditioned resid norm 1.209985378713e-01 true resid norm 
>>>> 1.209985378713e-01 ||r(i)||/||b|| 5.378366007245e-02
>>>>    11 KSP Residual norm 9.445076689969e-02
>>>>    11 KSP unpreconditioned resid norm 9.445076689969e-02 true resid norm 
>>>> 9.445076689969e-02 ||r(i)||/||b|| 4.198321756516e-02
>>>>    12 KSP Residual norm 8.308555284580e-02
>>>>    12 KSP unpreconditioned resid norm 8.308555284580e-02 true resid norm 
>>>> 8.308555284580e-02 ||r(i)||/||b|| 3.693139776569e-02
>>>>    13 KSP Residual norm 5.472865592585e-02
>>>>    13 KSP unpreconditioned resid norm 5.472865592585e-02 true resid norm 
>>>> 5.472865592585e-02 ||r(i)||/||b|| 2.432680161532e-02
>>>>    14 KSP Residual norm 4.357870564398e-02
>>>>    14 KSP unpreconditioned resid norm 4.357870564398e-02 true resid norm 
>>>> 4.357870564398e-02 ||r(i)||/||b|| 1.937066622447e-02
>>>>    15 KSP Residual norm 5.079681292439e-02
>>>>    15 KSP unpreconditioned resid norm 5.079681292439e-02 true resid norm 
>>>> 5.079681292439e-02 ||r(i)||/||b|| 2.257910357558e-02
>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP Residual norm 5.079681292439e-02
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP unpreconditioned resid norm 5.079681292439e-02 true resid norm 
>>>> 5.079681292439e-02 ||r(i)||/||b|| 2.257910357559e-02
>>>>     1 KSP Residual norm 2.934938644003e-02
>>>>     1 KSP unpreconditioned resid norm 2.934938644003e-02 true resid norm 
>>>> 2.934938644003e-02 ||r(i)||/||b|| 1.304575618348e-02
>>>>     2 KSP Residual norm 3.257065831294e-02
>>>>     2 KSP unpreconditioned resid norm 3.257065831294e-02 true resid norm 
>>>> 3.257065831294e-02 ||r(i)||/||b|| 1.447760647243e-02
>>>>     3 KSP Residual norm 4.143063876867e-02
>>>>     3 KSP unpreconditioned resid norm 4.143063876867e-02 true resid norm 
>>>> 4.143063876867e-02 ||r(i)||/||b|| 1.841585387164e-02
>>>>     4 KSP Residual norm 4.822471409489e-02
>>>>     4 KSP unpreconditioned resid norm 4.822471409489e-02 true resid norm 
>>>> 4.822471409489e-02 ||r(i)||/||b|| 2.143580968499e-02
>>>>     5 KSP Residual norm 3.197538246153e-02
>>>>     5 KSP unpreconditioned resid norm 3.197538246153e-02 true resid norm 
>>>> 3.197538246153e-02 ||r(i)||/||b|| 1.421300729127e-02
>>>>     6 KSP Residual norm 3.461217019835e-02
>>>>     6 KSP unpreconditioned resid norm 3.461217019835e-02 true resid norm 
>>>> 3.461217019835e-02 ||r(i)||/||b|| 1.538505529958e-02
>>>>     7 KSP Residual norm 3.410193775327e-02
>>>>     7 KSP unpreconditioned resid norm 3.410193775327e-02 true resid norm 
>>>> 3.410193775327e-02 ||r(i)||/||b|| 1.515825777899e-02
>>>>     8 KSP Residual norm 4.690424294464e-02
>>>>     8 KSP unpreconditioned resid norm 4.690424294464e-02 true resid norm 
>>>> 4.690424294464e-02 ||r(i)||/||b|| 2.084886233233e-02
>>>>     9 KSP Residual norm 3.366148892800e-02
>>>>     9 KSP unpreconditioned resid norm 3.366148892800e-02 true resid norm 
>>>> 3.366148892800e-02 ||r(i)||/||b|| 1.496247896783e-02
>>>>    10 KSP Residual norm 4.068015727689e-02
>>>>    10 KSP unpreconditioned resid norm 4.068015727689e-02 true resid norm 
>>>> 4.068015727689e-02 ||r(i)||/||b|| 1.808226602707e-02
>>>>    11 KSP Residual norm 2.658836123104e-02
>>>>    11 KSP unpreconditioned resid norm 2.658836123104e-02 true resid norm 
>>>> 2.658836123104e-02 ||r(i)||/||b|| 1.181848481389e-02
>>>>    12 KSP Residual norm 2.826244186003e-02
>>>>    12 KSP unpreconditioned resid norm 2.826244186003e-02 true resid norm 
>>>> 2.826244186003e-02 ||r(i)||/||b|| 1.256261102456e-02
>>>>    13 KSP Residual norm 2.981793619508e-02
>>>>    13 KSP unpreconditioned resid norm 2.981793619508e-02 true resid norm 
>>>> 2.981793619508e-02 ||r(i)||/||b|| 1.325402581380e-02
>>>>    14 KSP Residual norm 3.525455091450e-02
>>>>    14 KSP unpreconditioned resid norm 3.525455091450e-02 true resid norm 
>>>> 3.525455091450e-02 ||r(i)||/||b|| 1.567059251914e-02
>>>>    15 KSP Residual norm 2.331539121838e-02
>>>>    15 KSP unpreconditioned resid norm 2.331539121838e-02 true resid norm 
>>>> 2.331539121838e-02 ||r(i)||/||b|| 1.036365478300e-02
>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP Residual norm 2.421498365806e-02
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP unpreconditioned resid norm 2.421498365806e-02 true resid norm 
>>>> 2.421498365806e-02 ||r(i)||/||b|| 1.000000000000e+00
>>>>     1 KSP Residual norm 1.761072112362e-02
>>>>     1 KSP unpreconditioned resid norm 1.761072112362e-02 true resid norm 
>>>> 1.761072112362e-02 ||r(i)||/||b|| 7.272654556492e-01
>>>>     2 KSP Residual norm 1.400842489042e-02
>>>>     2 KSP unpreconditioned resid norm 1.400842489042e-02 true resid norm 
>>>> 1.400842489042e-02 ||r(i)||/||b|| 5.785023474818e-01
>>>>     3 KSP Residual norm 1.419665483348e-02
>>>>     3 KSP unpreconditioned resid norm 1.419665483348e-02 true resid norm 
>>>> 1.419665483348e-02 ||r(i)||/||b|| 5.862756314004e-01
>>>>     4 KSP Residual norm 1.617590701667e-02
>>>>     4 KSP unpreconditioned resid norm 1.617590701667e-02 true resid norm 
>>>> 1.617590701667e-02 ||r(i)||/||b|| 6.680123036665e-01
>>>>     5 KSP Residual norm 1.354824081005e-02
>>>>     5 KSP unpreconditioned resid norm 1.354824081005e-02 true resid norm 
>>>> 1.354824081005e-02 ||r(i)||/||b|| 5.594982429624e-01
>>>>     6 KSP Residual norm 1.387252917475e-02
>>>>     6 KSP unpreconditioned resid norm 1.387252917475e-02 true resid norm 
>>>> 1.387252917475e-02 ||r(i)||/||b|| 5.728902967950e-01
>>>>     7 KSP Residual norm 1.514043102087e-02
>>>>     7 KSP unpreconditioned resid norm 1.514043102087e-02 true resid norm 
>>>> 1.514043102087e-02 ||r(i)||/||b|| 6.252505157414e-01
>>>>     8 KSP Residual norm 1.275811124745e-02
>>>>     8 KSP unpreconditioned resid norm 1.275811124745e-02 true resid norm 
>>>> 1.275811124745e-02 ||r(i)||/||b|| 5.268684640721e-01
>>>>     9 KSP Residual norm 1.241039155981e-02
>>>>     9 KSP unpreconditioned resid norm 1.241039155981e-02 true resid norm 
>>>> 1.241039155981e-02 ||r(i)||/||b|| 5.125087728764e-01
>>>>    10 KSP Residual norm 9.585207801652e-03
>>>>    10 KSP unpreconditioned resid norm 9.585207801652e-03 true resid norm 
>>>> 9.585207801652e-03 ||r(i)||/||b|| 3.958378802565e-01
>>>>    11 KSP Residual norm 9.022641230732e-03
>>>>    11 KSP unpreconditioned resid norm 9.022641230732e-03 true resid norm 
>>>> 9.022641230732e-03 ||r(i)||/||b|| 3.726057121550e-01
>>>>    12 KSP Residual norm 1.187709152046e-02
>>>>    12 KSP unpreconditioned resid norm 1.187709152046e-02 true resid norm 
>>>> 1.187709152046e-02 ||r(i)||/||b|| 4.904852172597e-01
>>>>    13 KSP Residual norm 1.084880112494e-02
>>>>    13 KSP unpreconditioned resid norm 1.084880112494e-02 true resid norm 
>>>> 1.084880112494e-02 ||r(i)||/||b|| 4.480201712351e-01
>>>>    14 KSP Residual norm 8.194750346781e-03
>>>>    14 KSP unpreconditioned resid norm 8.194750346781e-03 true resid norm 
>>>> 8.194750346781e-03 ||r(i)||/||b|| 3.384165136140e-01
>>>>    15 KSP Residual norm 7.614246199165e-03
>>>>    15 KSP unpreconditioned resid norm 7.614246199165e-03 true resid norm 
>>>> 7.614246199165e-03 ||r(i)||/||b|| 3.144435819857e-01
>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP Residual norm 7.614246199165e-03
>>>>     Residual norms for mg_levels_1_ solve.
>>>>     0 KSP unpreconditioned resid norm 7.614246199165e-03 true resid norm 
>>>> 7.614246199165e-03 ||r(i)||/||b|| 3.144435819857e-01
>>>>     1 KSP Residual norm 5.620014684145e-03
>>>>     1 KSP unpreconditioned resid norm 5.620014684145e-03 true resid norm 
>>>> 5.620014684145e-03 ||r(i)||/||b|| 2.320883120759e-01
>>>>     2 KSP Residual norm 6.643368363907e-03
>>>>     2 KSP unpreconditioned resid norm 6.643368363907e-03 true resid norm 
>>>> 6.643368363907e-03 ||r(i)||/||b|| 2.743494878096e-01
>>>>     3 KSP Residual norm 8.708642393659e-03
>>>>     3 KSP unpreconditioned resid norm 8.708642393659e-03 true resid norm 
>>>> 8.708642393659e-03 ||r(i)||/||b|| 3.596385823189e-01
>>>>     4 KSP Residual norm 6.401852907459e-03
>>>>     4 KSP unpreconditioned resid norm 6.401852907459e-03 true resid norm 
>>>> 6.401852907459e-03 ||r(i)||/||b|| 2.643756856440e-01
>>>>     5 KSP Residual norm 7.230576215262e-03
>>>>     5 KSP unpreconditioned resid norm 7.230576215262e-03 true resid norm 
>>>> 7.230576215262e-03 ||r(i)||/||b|| 2.985992605803e-01
>>>>     6 KSP Residual norm 6.204081601285e-03
>>>>     6 KSP unpreconditioned resid norm 6.204081601285e-03 true resid norm 
>>>> 6.204081601285e-03 ||r(i)||/||b|| 2.562083744880e-01
>>>>     7 KSP Residual norm 7.038656665944e-03
>>>>     7 KSP unpreconditioned resid norm 7.038656665944e-03 true resid norm 
>>>> 7.038656665944e-03 ||r(i)||/||b|| 2.906736079337e-01
>>>>     8 KSP Residual norm 7.194079694050e-03
>>>>     8 KSP unpreconditioned resid norm 7.194079694050e-03 true resid norm 
>>>> 7.194079694050e-03 ||r(i)||/||b|| 2.970920730585e-01
>>>>     9 KSP Residual norm 6.353576889135e-03
>>>>     9 KSP unpreconditioned resid norm 6.353576889135e-03 true resid norm 
>>>> 6.353576889135e-03 ||r(i)||/||b|| 2.623820432363e-01
>>>>    10 KSP Residual norm 7.313589502731e-03
>>>>    10 KSP unpreconditioned resid norm 7.313589502731e-03 true resid norm 
>>>> 7.313589502731e-03 ||r(i)||/||b|| 3.020274391264e-01
>>>>    11 KSP Residual norm 6.643320423193e-03
>>>>    11 KSP unpreconditioned resid norm 6.643320423193e-03 true resid norm 
>>>> 6.643320423193e-03 ||r(i)||/||b|| 2.743475080142e-01
>>>>    12 KSP Residual norm 7.235443182108e-03
>>>>    12 KSP unpreconditioned resid norm 7.235443182108e-03 true resid norm 
>>>> 7.235443182108e-03 ||r(i)||/||b|| 2.988002504681e-01
>>>>    13 KSP Residual norm 4.971292307201e-03
>>>>    13 KSP unpreconditioned resid norm 4.971292307201e-03 true resid norm 
>>>> 4.971292307201e-03 ||r(i)||/||b|| 2.052981896416e-01
>>>>    14 KSP Residual norm 5.357933842147e-03
>>>>    14 KSP unpreconditioned resid norm 5.357933842147e-03 true resid norm 
>>>> 5.357933842147e-03 ||r(i)||/||b|| 2.212652264320e-01
>>>>    15 KSP Residual norm 5.841682994497e-03
>>>>    15 KSP unpreconditioned resid norm 5.841682994497e-03 true resid norm 
>>>> 5.841682994497e-03 ||r(i)||/||b|| 2.412424917146e-01
>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>> Cheers,
>>>> Elena
>>>> From: Barry Smith <[email protected] <mailto:[email protected]>>
>>>> Sent: 29 September 2025 20:31:26
>>>> To: Moral Sanchez, Elena
>>>> Cc: Mark Adams; petsc-users
>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG 
>>>> at the finest level
>>>>  
>>>> 
>>>>   Thanks. I missed something earlier in the KSPView
>>>> 
>>>>>> using UNPRECONDITIONED norm type for convergence test
>>>> 
>>>> Please add the options 
>>>> 
>>>>>>>> -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual 
>>>> 
>>>> It is using the unpreconditioned residual norms for convergence testing 
>>>> but we are printing the preconditioned norms.
>>>> 
>>>> Barry
>>>> 
>>>> 
>>>>> On Sep 29, 2025, at 11:12 AM, Moral Sanchez, Elena 
>>>>> <[email protected] <mailto:[email protected]>> 
>>>>> wrote:
>>>>> 
>>>>> This is the output:
>>>>>     Residual norms for mg_levels_1_ solve.
>>>>>     0 KSP Residual norm 2.249726733143e+00
>>>>>     1 KSP Residual norm 1.433120400946e+00
>>>>>     2 KSP Residual norm 1.169262560123e+00
>>>>>     3 KSP Residual norm 1.323528716607e+00
>>>>>     4 KSP Residual norm 5.006323254234e-01
>>>>>     5 KSP Residual norm 3.569836784785e-01
>>>>>     6 KSP Residual norm 2.493182937513e-01
>>>>>     7 KSP Residual norm 3.038202502298e-01
>>>>>     8 KSP Residual norm 2.780214194402e-01
>>>>>     9 KSP Residual norm 1.676826341491e-01
>>>>>    10 KSP Residual norm 1.209985378713e-01
>>>>>    11 KSP Residual norm 9.445076689969e-02
>>>>>    12 KSP Residual norm 8.308555284580e-02
>>>>>    13 KSP Residual norm 5.472865592585e-02
>>>>>    14 KSP Residual norm 4.357870564398e-02
>>>>>    15 KSP Residual norm 5.079681292439e-02
>>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>>     Residual norms for mg_levels_1_ solve.
>>>>>     0 KSP Residual norm 5.079681292439e-02
>>>>>     1 KSP Residual norm 2.934938644003e-02
>>>>>     2 KSP Residual norm 3.257065831294e-02
>>>>>     3 KSP Residual norm 4.143063876867e-02
>>>>>     4 KSP Residual norm 4.822471409489e-02
>>>>>     5 KSP Residual norm 3.197538246153e-02
>>>>>     6 KSP Residual norm 3.461217019835e-02
>>>>>     7 KSP Residual norm 3.410193775327e-02
>>>>>     8 KSP Residual norm 4.690424294464e-02
>>>>>     9 KSP Residual norm 3.366148892800e-02
>>>>>    10 KSP Residual norm 4.068015727689e-02
>>>>>    11 KSP Residual norm 2.658836123104e-02
>>>>>    12 KSP Residual norm 2.826244186003e-02
>>>>>    13 KSP Residual norm 2.981793619508e-02
>>>>>    14 KSP Residual norm 3.525455091450e-02
>>>>>    15 KSP Residual norm 2.331539121838e-02
>>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>>     Residual norms for mg_levels_1_ solve.
>>>>>     0 KSP Residual norm 2.421498365806e-02
>>>>>     1 KSP Residual norm 1.761072112362e-02
>>>>>     2 KSP Residual norm 1.400842489042e-02
>>>>>     3 KSP Residual norm 1.419665483348e-02
>>>>>     4 KSP Residual norm 1.617590701667e-02
>>>>>     5 KSP Residual norm 1.354824081005e-02
>>>>>     6 KSP Residual norm 1.387252917475e-02
>>>>>     7 KSP Residual norm 1.514043102087e-02
>>>>>     8 KSP Residual norm 1.275811124745e-02
>>>>>     9 KSP Residual norm 1.241039155981e-02
>>>>>    10 KSP Residual norm 9.585207801652e-03
>>>>>    11 KSP Residual norm 9.022641230732e-03
>>>>>    12 KSP Residual norm 1.187709152046e-02
>>>>>    13 KSP Residual norm 1.084880112494e-02
>>>>>    14 KSP Residual norm 8.194750346781e-03
>>>>>    15 KSP Residual norm 7.614246199165e-03
>>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>>     Residual norms for mg_levels_1_ solve.
>>>>>     0 KSP Residual norm 7.614246199165e-03
>>>>>     1 KSP Residual norm 5.620014684145e-03
>>>>>     2 KSP Residual norm 6.643368363907e-03
>>>>>     3 KSP Residual norm 8.708642393659e-03
>>>>>     4 KSP Residual norm 6.401852907459e-03
>>>>>     5 KSP Residual norm 7.230576215262e-03
>>>>>     6 KSP Residual norm 6.204081601285e-03
>>>>>     7 KSP Residual norm 7.038656665944e-03
>>>>>     8 KSP Residual norm 7.194079694050e-03
>>>>>     9 KSP Residual norm 6.353576889135e-03
>>>>>    10 KSP Residual norm 7.313589502731e-03
>>>>>    11 KSP Residual norm 6.643320423193e-03
>>>>>    12 KSP Residual norm 7.235443182108e-03
>>>>>    13 KSP Residual norm 4.971292307201e-03
>>>>>    14 KSP Residual norm 5.357933842147e-03
>>>>>    15 KSP Residual norm 5.841682994497e-03
>>>>>     Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 15
>>>>> 
>>>>> From: Barry Smith <[email protected] <mailto:[email protected]>>
>>>>> Sent: 29 September 2025 15:56:33
>>>>> To: Moral Sanchez, Elena
>>>>> Cc: Mark Adams; petsc-users
>>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG 
>>>>> at the finest level
>>>>>  
>>>>> 
>>>>>   I asked you to run with 
>>>>> 
>>>>>>>>  -ksp_monitor -mg_levels_ksp_monitor -ksp_converged_reason 
>>>>>>>> -mg_levels_ksp_converged_reason
>>>>> 
>>>>> you chose not to, delaying the process of understanding what is happening.
>>>>> 
>>>>>   Please run with those options and send the output. My guess is that you 
>>>>> are computing the "residual norms" in your own monitor code, and it is 
>>>>> doing so differently than what PETSc does, thus resulting in the 
>>>>> appearance of a sufficiently small residual norm, whereas PETSc may not 
>>>>> have calculated something that small.
>>>>> 
>>>>> Barry
>>>>> 
>>>>> 
>>>>>> On Sep 29, 2025, at 8:39 AM, Moral Sanchez, Elena 
>>>>>> <[email protected] <mailto:[email protected]>> 
>>>>>> wrote:
>>>>>> 
>>>>>> Thanks for the hint. I agree that the coarse solve should be much more 
>>>>>> "accurate". However, for the moment I am just trying to understand what 
>>>>>> the MG is doing exactly. 
>>>>>> 
>>>>>> I am puzzled to see that the fine grid smoother ("lvl 0") does not stop 
>>>>>> when the residual becomes less than 1e-1. It should converge due to the 
>>>>>> atol. 
>>>>>> 
>>>>>> From: Mark Adams <[email protected] <mailto:[email protected]>>
>>>>>> Sent: 29 September 2025 14:20:56
>>>>>> To: Moral Sanchez, Elena
>>>>>> Cc: Barry Smith; petsc-users
>>>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother CG 
>>>>>> at the finest level
>>>>>>  
>>>>>> Oh I see the coarse grid solver in your full solver output now.
>>>>>> You still want an accurate coarse grid solve. Usually (the default in 
>>>>>> GAMG) you use a direct solver on one process, and cousin until the 
>>>>>> coarse grid is small enough to make that cheap.
>>>>>> 
>>>>>> On Mon, Sep 29, 2025 at 8:07 AM Moral Sanchez, Elena 
>>>>>> <[email protected] <mailto:[email protected]>> 
>>>>>> wrote:
>>>>>>> Hi, I doubled the system size and changed the tolerances just to show a 
>>>>>>> better example of the problem. This is the output of the callbacks in 
>>>>>>> the first iteration:
>>>>>>>     CG Iter 0/1 | res = 2.25e+00/1.00e-09 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 2.25e+00/1.00e-01 | 0.3 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 1.43e+00/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 1.17e+00/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 1.32e+00/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 5.01e-01/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 3.57e-01/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 2.49e-01/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 3.04e-01/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 2.78e-01/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 1.68e-01/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 1.21e-01/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 9.45e-02/1.00e-01 | 0.2 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 8.31e-02/1.00e-01 | 0.2 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 5.47e-02/1.00e-01 | 0.2 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 4.36e-02/1.00e-01 | 0.2 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 5.08e-02/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         ConvergedReason MG lvl 0: 4
>>>>>>>         MG lvl -1 (s=524): CG Iter 0/15 | res = 8.15e-02/1.00e-01 | 3.0 
>>>>>>> s
>>>>>>>         ConvergedReason MG lvl -1: 3
>>>>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 5.08e-02/1.00e-01 | 0.3 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 2.93e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 3.26e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 4.14e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 4.82e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 3.20e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 3.46e-02/1.00e-01 | 0.3 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 3.41e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 4.69e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 3.37e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 4.07e-02/1.00e-01 | 0.2 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 2.66e-02/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 2.83e-02/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 2.98e-02/1.00e-01 | 0.2 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 3.53e-02/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 2.33e-02/1.00e-01 | 0.2 
>>>>>>> s
>>>>>>>         ConvergedReason MG lvl 0: 4
>>>>>>>     CG Iter 1/1 | res = 2.42e-02/1.00e-09 | 5.6 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 2.42e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 1.76e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 1.40e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 1.42e-02/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 1.62e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 1.35e-02/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 1.39e-02/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 1.51e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 1.28e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 1.24e-02/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 9.59e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 9.02e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 1.19e-02/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 1.08e-02/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 8.19e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 7.61e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         ConvergedReason MG lvl 0: 4
>>>>>>>         MG lvl -1 (s=524): CG Iter 0/15 | res = 1.38e-02/1.00e-01 | 5.2 
>>>>>>> s
>>>>>>>         ConvergedReason MG lvl -1: 3
>>>>>>>         MG lvl 0 (s=884): CG Iter 0/15 | res = 7.61e-03/1.00e-01 | 0.2 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 1/15 | res = 5.62e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 2/15 | res = 6.64e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 3/15 | res = 8.71e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 4/15 | res = 6.40e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 5/15 | res = 7.23e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 6/15 | res = 6.20e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 7/15 | res = 7.04e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 8/15 | res = 7.19e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 9/15 | res = 6.35e-03/1.00e-01 | 0.1 s
>>>>>>>         MG lvl 0 (s=884): CG Iter 10/15 | res = 7.31e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 11/15 | res = 6.64e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 12/15 | res = 7.24e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 13/15 | res = 4.97e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 14/15 | res = 5.36e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         MG lvl 0 (s=884): CG Iter 15/15 | res = 5.84e-03/1.00e-01 | 0.1 
>>>>>>> s
>>>>>>>         ConvergedReason MG lvl 0: 4    
>>>>>>>     CG ConvergedReason: -3 
>>>>>>> 
>>>>>>> For completeness, I add here the -ksp_view of the whole solver:
>>>>>>>     KSP Object: 1 MPI process
>>>>>>>       type: cg
>>>>>>>         variant HERMITIAN
>>>>>>>       maximum iterations=1, nonzero initial guess
>>>>>>>       tolerances: relative=1e-08, absolute=1e-09, divergence=10000.
>>>>>>>       left preconditioning
>>>>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>>>>     PC Object: 1 MPI process
>>>>>>>       type: mg
>>>>>>>         type is MULTIPLICATIVE, levels=2 cycles=v
>>>>>>>           Cycles per PCApply=1
>>>>>>>           Not using Galerkin computed coarse grid matrices
>>>>>>>       Coarse grid solver -- level 0 -------------------------------
>>>>>>>         KSP Object: (mg_coarse_) 1 MPI process
>>>>>>>           type: cg
>>>>>>>         variant HERMITIAN
>>>>>>>           maximum iterations=15, nonzero initial guess
>>>>>>>           tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>           left preconditioning
>>>>>>>           using UNPRECONDITIONED norm type for convergence test
>>>>>>>         PC Object: (mg_coarse_) 1 MPI process
>>>>>>>           type: none
>>>>>>>           linear system matrix = precond matrix:
>>>>>>>           Mat Object: 1 MPI process
>>>>>>>         type: python
>>>>>>>         rows=524, cols=524
>>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>>       Down solver (pre-smoother) on level 1 
>>>>>>> -------------------------------
>>>>>>>         KSP Object: (mg_levels_1_) 1 MPI process
>>>>>>>           type: cg
>>>>>>>         variant HERMITIAN
>>>>>>>           maximum iterations=15, nonzero initial guess
>>>>>>>           tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>           left preconditioning
>>>>>>>           using UNPRECONDITIONED norm type for convergence test
>>>>>>>         PC Object: (mg_levels_1_) 1 MPI process
>>>>>>>           type: none
>>>>>>>           linear system matrix = precond matrix:
>>>>>>>           Mat Object: 1 MPI process
>>>>>>>         type: python
>>>>>>>         rows=884, cols=884
>>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>>       Up solver (post-smoother) same as down solver (pre-smoother)
>>>>>>>       linear system matrix = precond matrix:
>>>>>>>       Mat Object: 1 MPI process
>>>>>>>         type: python
>>>>>>>         rows=884, cols=884
>>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>>>         
>>>>>>> Regarding Mark's Email: What do you mean with "the whole solver doesn't 
>>>>>>> have a coarse grid"? I am using my own Restriction and Interpolation 
>>>>>>> operators.
>>>>>>> Thanks for the help,
>>>>>>> Elena
>>>>>>> 
>>>>>>> From: Mark Adams <[email protected] <mailto:[email protected]>>
>>>>>>> Sent: 28 September 2025 20:13:54
>>>>>>> To: Barry Smith
>>>>>>> Cc: Moral Sanchez, Elena; petsc-users
>>>>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother 
>>>>>>> CG at the finest level
>>>>>>>  
>>>>>>> Not sure why your "whole"solver does not have a coarse grid but this is 
>>>>>>> wrong:
>>>>>>> 
>>>>>>>> KSP Object: (mg_coarse_) 1 MPI process
>>>>>>>>   type: cg
>>>>>>>>     variant HERMITIAN
>>>>>>>>   maximum iterations=100, initial guess is zero
>>>>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>> 
>>>>>>>> The coarse grid has to be accurate. The defaults are a good place to 
>>>>>>>> start: max_it=10.000, rtol=1e-5, atol=1e-30 (ish)
>>>>>>> 
>>>>>>> On Fri, Sep 26, 2025 at 3:21 PM Barry Smith <[email protected] 
>>>>>>> <mailto:[email protected]>> wrote:
>>>>>>>>   Looks reasonable. Send the output running with 
>>>>>>>> 
>>>>>>>>    -ksp_monitor -mg_levels_ksp_monitor -ksp_converged_reason 
>>>>>>>> -mg_levels_ksp_converged_reason
>>>>>>>> 
>>>>>>>>> On Sep 26, 2025, at 1:19 PM, Moral Sanchez, Elena 
>>>>>>>>> <[email protected] 
>>>>>>>>> <mailto:[email protected]>> wrote:
>>>>>>>>> 
>>>>>>>>> Dear Barry,
>>>>>>>>> 
>>>>>>>>> This is -ksp_view for the smoother at the finest level:
>>>>>>>>> KSP Object: (mg_levels_1_) 1 MPI process
>>>>>>>>>   type: cg
>>>>>>>>>     variant HERMITIAN
>>>>>>>>>   maximum iterations=10, nonzero initial guess
>>>>>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>>>   left preconditioning
>>>>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>>>>> PC Object: (mg_levels_1_) 1 MPI process
>>>>>>>>>   type: none
>>>>>>>>>   linear system matrix = precond matrix:
>>>>>>>>>   Mat Object: 1 MPI process
>>>>>>>>>     type: python
>>>>>>>>>     rows=524, cols=524
>>>>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>>>>> And at the coarsest level:
>>>>>>>>> KSP Object: (mg_coarse_) 1 MPI process
>>>>>>>>>   type: cg
>>>>>>>>>     variant HERMITIAN
>>>>>>>>>   maximum iterations=100, initial guess is zero
>>>>>>>>>   tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>>>   left preconditioning
>>>>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>>>>> PC Object: (mg_coarse_) 1 MPI process
>>>>>>>>>   type: none
>>>>>>>>>   linear system matrix = precond matrix:
>>>>>>>>>   Mat Object: 1 MPI process
>>>>>>>>>     type: python
>>>>>>>>>     rows=344, cols=344
>>>>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>>>>> And for the whole solver:
>>>>>>>>> KSP Object: 1 MPI process
>>>>>>>>>   type: cg
>>>>>>>>>     variant HERMITIAN
>>>>>>>>>   maximum iterations=100, nonzero initial guess
>>>>>>>>>   tolerances: relative=1e-08, absolute=1e-09, divergence=10000.
>>>>>>>>>   left preconditioning
>>>>>>>>>   using UNPRECONDITIONED norm type for convergence test
>>>>>>>>> PC Object: 1 MPI process
>>>>>>>>>   type: mg
>>>>>>>>>     type is MULTIPLICATIVE, levels=2 cycles=v
>>>>>>>>>       Cycles per PCApply=1
>>>>>>>>>       Not using Galerkin computed coarse grid matrices
>>>>>>>>>   Coarse grid solver -- level 0 -------------------------------
>>>>>>>>>     KSP Object: (mg_coarse_) 1 MPI process
>>>>>>>>>       type: cg
>>>>>>>>>         variant HERMITIAN
>>>>>>>>>       maximum iterations=100, initial guess is zero
>>>>>>>>>       tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>>>       left preconditioning
>>>>>>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>>>>>>     PC Object: (mg_coarse_) 1 MPI process
>>>>>>>>>       type: none
>>>>>>>>>       linear system matrix = precond matrix:
>>>>>>>>>       Mat Object: 1 MPI process
>>>>>>>>>         type: python
>>>>>>>>>         rows=344, cols=344
>>>>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>>>>   Down solver (pre-smoother) on level 1 
>>>>>>>>> -------------------------------
>>>>>>>>>     KSP Object: (mg_levels_1_) 1 MPI process
>>>>>>>>>       type: cg
>>>>>>>>>         variant HERMITIAN
>>>>>>>>>       maximum iterations=10, nonzero initial guess
>>>>>>>>>       tolerances: relative=0.1, absolute=0.1, divergence=1e+30
>>>>>>>>>       left preconditioning
>>>>>>>>>       using UNPRECONDITIONED norm type for convergence test
>>>>>>>>>     PC Object: (mg_levels_1_) 1 MPI process
>>>>>>>>>       type: none
>>>>>>>>>       linear system matrix = precond matrix:
>>>>>>>>>       Mat Object: 1 MPI process
>>>>>>>>>         type: python
>>>>>>>>>         rows=524, cols=524
>>>>>>>>>             Python: Solver_petsc.LeastSquaresOperator
>>>>>>>>>   Up solver (post-smoother) same as down solver (pre-smoother)
>>>>>>>>>   linear system matrix = precond matrix:
>>>>>>>>>   Mat Object: 1 MPI process
>>>>>>>>>     type: python
>>>>>>>>>     rows=524, cols=524
>>>>>>>>>         Python: Solver_petsc.LeastSquaresOperator
>>>>>>>>> Best,
>>>>>>>>> Elena
>>>>>>>>> 
>>>>>>>>>   
>>>>>>>>> From: Barry Smith <[email protected] <mailto:[email protected]>>
>>>>>>>>> Sent: 26 September 2025 19:05:02
>>>>>>>>> To: Moral Sanchez, Elena
>>>>>>>>> Cc: [email protected] <mailto:[email protected]>
>>>>>>>>> Subject: Re: [petsc-users] setting correct tolerances for MG smoother 
>>>>>>>>> CG at the finest level
>>>>>>>>>  
>>>>>>>>>   
>>>>>>>>> Send the output using -ksp_view 
>>>>>>>>> 
>>>>>>>>> Normally one uses a fixed number of iterations of smoothing  on level 
>>>>>>>>> with multigrid rather than a tolerance, but yes PETSc should respect 
>>>>>>>>> such a tolerance.
>>>>>>>>> 
>>>>>>>>> Barry
>>>>>>>>> 
>>>>>>>>> 
>>>>>>>>>> On Sep 26, 2025, at 12:49 PM, Moral Sanchez, Elena 
>>>>>>>>>> <[email protected] 
>>>>>>>>>> <mailto:[email protected]>> wrote:
>>>>>>>>>> 
>>>>>>>>>> Hi, 
>>>>>>>>>> I am using multigrid (multiplicative) as a preconditioner with a 
>>>>>>>>>> V-cycle of two levels. At each level, I am setting CG as the 
>>>>>>>>>> smoother with certain tolerance.
>>>>>>>>>> 
>>>>>>>>>> What I observe is that in the finest level the CG continues 
>>>>>>>>>> iterating after the residual norm reaches the tolerance (atol) and 
>>>>>>>>>> it only stops when reaching the maximum number of iterations at that 
>>>>>>>>>> level. At the coarsest level this does not occur and the CG stops 
>>>>>>>>>> when the tolerance is reached.
>>>>>>>>>> 
>>>>>>>>>> I double-checked that the smoother at the finest level has the right 
>>>>>>>>>> tolerance. And I am using a Monitor function to track the residual.
>>>>>>>>>> 
>>>>>>>>>> Do you know how to make the smoother at the finest level stop when 
>>>>>>>>>> reaching the tolerance?
>>>>>>>>>> 
>>>>>>>>>> Cheers,
>>>>>>>>>> Elena.
> 

Reply via email to