Or use extended precision arguments.  e.g.

   bernoulli=: ! * (% ^ - 1:) t.

   bernoulli i.9x
1 _0.5 0.166667 _4.16334e_17 _0.0333333 _1.30104e_17 0.0238095 _1.76074e_16
_0.0333333

   bernoulli i.9x
1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30



On Mon, May 21, 2012 at 4:12 PM, Bo Jacoby <bojac...@yahoo.dk> wrote:

> (|**) gets rid of the rounding errors around 0.
>
>    (|**) bernoulli i.9
> 1 _0.5 0.166667 0 _0.0333333 0 0.0238095 0 _0.0333333
>
>
>
>
>
>
> >________________________________
> > Fra: Raul Miller <rauldmil...@gmail.com>
> >Til: Programming forum <programming@jsoftware.com>
> >Sendt: 21:39 mandag den 21. maj 2012
> >Emne: Re: [Jprogramming] Challenge 12(?)
> >
> >Based on the mathworld page, this looks like an implementation of
> >Bernoulli numbers in J:
> >
> >   bernoulli=: ! * (% ^ - 1:) t.
> >
> >Example use:
> >
> >      bernoulli i. 9
> >1 _0.5 0.166667 _4.16334e_17 _0.0333333 _1.30104e_17 0.0238095
> >_1.76074e_16 _0.0333333
> >
> >The "zero" values are not quite zero, but that's a limitation of floating
> point.
> >
> >--
> >Raul
> >
> >On Sun, May 20, 2012 at 6:07 AM, Viktor Cerovski
> ><viktor.cerov...@gmail.com> wrote:
> >> R.E.  Boss wrote:
> >>> What is the relation between the integrals (
> >>> http://www.jsoftware.com/jwiki/Pi/AConvergentSeries ) and the
> Bernoulli
> >>> numbers? Or
> >>> where can I find it?
> >>
> >> The first integral has the form:
> >>
> >>  integral cos(2x) * product_n cos(x/n) dx
> >>
> >> When you write the product of cos(x/n) as exp of sum of ln cos(x/n),
> >> series expansion of ln cos(x/n) has Bernoulli numbers
> >> in its coefficients.
> >>
> >> Obtained double-sum series then should be transformed
> >> a bit and appropriately truncated so that it has sufficient precision,
> >> and then numerical integration performed.
> >>
> >> The second expression (expansion of pi/8) is written in terms
> >> of integrals with different cosine terms and the same infinite
> >> product term, so truncation and numerical integration has to be done
> >> with even higher precision for m=1, etc.
> >>
> >> In short, there is quite a bit of work to get this through in J.
> >>
> >>
> >>
> >>>
> >>> R.E. Boss
> >>>
> >>>
> >>>> -----Oorspronkelijk bericht-----
> >>>> Van: programming-boun...@jsoftware.com
> >>>> [mailto:programming-boun...@jsoftware.com] Namens Viktor Cerovski
> >>>> Verzonden: dinsdag 15 mei 2012 18:54
> >>>> Aan: programming@jsoftware.com
> >>>> Onderwerp: Re: [Jprogramming] Challenge 12(?)
> >>>>
> >>>>
> >>>>
> >>>> R.E.  Boss wrote:
> >>>> >
> >>>> > I scanned a part of Exploratory Experimentation and Computation,
> >>>> > https://www.opendrive.com/files?57384074_sCfMP , where two
> >>>> > statements are made about a very rapidly convergent series.
> >>>> >
> >>>> > 1. The first term coincides with (pi % 8) in the first 42 digits
> >>>> > 2. The first 2 terms even give 500 digits
> >>>> >
> >>>> > How can these two statements be confirmed (or rejected) with J?
> >>>> >
> >>>> They can be confirmed by calculating the integrals.
> >>>>
> >>>> Bernoulli numbers are involved among other things, and Roger's essay
> >>>> http://www.jsoftware.com/jwiki/Essays/Bernoulli%20Numbers
> >>>> gives
> >>>>
> >>>> B0=: 3 : 0
> >>>>  b=. ,1x
> >>>>  for_m. }.i.x: y do. b=. b,(1+m)%~-+/b*(i.m)!1+m end.
> >>>> )
> >>>>
> >>>> which can be shortened to:
> >>>>
> >>>> B0t=: [: ([ , +/@:(* i.!>:) -@% 1+])~/ }:@i.@-,1:
> >>>>
> >>>>    B0 20
> >>>> 1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30 0 5r66 0 _691r2730 0 7r6 0
> _3617r510 0
> >>>> 43867r798 0
> >>>>
> >>>>    B0t 20x
> >>>> 1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30 0 5r66 0 _691r2730 0 7r6 0
> _3617r510 0
> >>>> 43867r798 0
> >>>>
> >>>>    ts 'y0=.B0 200'
> >>>> 1.85257 362496
> >>>>
> >>>>    ts 'y0t=.B0t 200x'
> >>>> 1.8853 293888
> >>>>
> >>>>    y0-:y0t
> >>>> 1
> >>>>
> >>>>
> >>>>
> >>>>
> >>>>
> >>>> >
> >>>> > (No deadlines apply.)
> >>>> >
> >>>> >
> >>>> > R.E. Boss
> >>>> >
> >>>> >
> ----------------------------------------------------------------------
> >>>> > For information about J forums see
> http://www.jsoftware.com/forums.htm
> >>>> >
> >>>> >
> >>>>
> >>>> --
> >>>> View this message in context:
> >>>>
> http://old.nabble.com/Challenge-12%28-%29-tp33844136s24193p33849223.html
> >>>> Sent from the J Programming mailing list archive at Nabble.com.
> >>>>
> >>>> ----------------------------------------------------------------------
> >>>> For information about J forums see
> http://www.jsoftware.com/forums.htm
> >>>
> >>> ----------------------------------------------------------------------
> >>> For information about J forums see http://www.jsoftware.com/forums.htm
> >>>
> >>>
> >>
> >> --
> >> View this message in context:
> http://old.nabble.com/Challenge-12%28-%29-tp33844136s24193p33877568.html
> >> Sent from the J Programming mailing list archive at Nabble.com.
> >>
> >> ----------------------------------------------------------------------
> >> For information about J forums see http://www.jsoftware.com/forums.htm
> >----------------------------------------------------------------------
> >For information about J forums see http://www.jsoftware.com/forums.htm
> >
> >
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to