Yes, that's exactly what happened.  Thanks for the correction.


On Mon, May 21, 2012 at 11:08 PM, Bo Jacoby <bojac...@yahoo.dk> wrote:

> Roger, you first example below should have been (bernoulli i.9) rather
> than (bernoulli i.9x). You modified the line before typing Enter, I guess.
>
>
>
> >________________________________
> > Fra: Roger Hui <rogerhui.can...@gmail.com>
> >Til: Programming forum <programming@jsoftware.com>
> >Sendt: 5:16 tirsdag den 22. maj 2012
> >Emne: Re: [Jprogramming] Challenge 12(?)
> >
> >Or use extended precision arguments.  e.g.
> >
> >   bernoulli=: ! * (% ^ - 1:) t.
> >
> >   bernoulli i.9x
> >1 _0.5 0.166667 _4.16334e_17 _0.0333333 _1.30104e_17 0.0238095
> _1.76074e_16
> >_0.0333333
> >
> >   bernoulli i.9x
> >1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30
> >
> >
> >
> >On Mon, May 21, 2012 at 4:12 PM, Bo Jacoby <bojac...@yahoo.dk> wrote:
> >
> >> (|**) gets rid of the rounding errors around 0.
> >>
> >>    (|**) bernoulli i.9
> >> 1 _0.5 0.166667 0 _0.0333333 0 0.0238095 0 _0.0333333
> >>
> >>
> >>
> >>
> >>
> >>
> >> >________________________________
> >> > Fra: Raul Miller <rauldmil...@gmail.com>
> >> >Til: Programming forum <programming@jsoftware.com>
> >> >Sendt: 21:39 mandag den 21. maj 2012
> >> >Emne: Re: [Jprogramming] Challenge 12(?)
> >> >
> >> >Based on the mathworld page, this looks like an implementation of
> >> >Bernoulli numbers in J:
> >> >
> >> >   bernoulli=: ! * (% ^ - 1:) t.
> >> >
> >> >Example use:
> >> >
> >> >      bernoulli i. 9
> >> >1 _0.5 0.166667 _4.16334e_17 _0.0333333 _1.30104e_17 0.0238095
> >> >_1.76074e_16 _0.0333333
> >> >
> >> >The "zero" values are not quite zero, but that's a limitation of
> floating
> >> point.
> >> >
> >> >--
> >> >Raul
> >> >
> >> >On Sun, May 20, 2012 at 6:07 AM, Viktor Cerovski
> >> ><viktor.cerov...@gmail.com> wrote:
> >> >> R.E.  Boss wrote:
> >> >>> What is the relation between the integrals (
> >> >>> http://www.jsoftware.com/jwiki/Pi/AConvergentSeries ) and the
> >> Bernoulli
> >> >>> numbers? Or
> >> >>> where can I find it?
> >> >>
> >> >> The first integral has the form:
> >> >>
> >> >>  integral cos(2x) * product_n cos(x/n) dx
> >> >>
> >> >> When you write the product of cos(x/n) as exp of sum of ln cos(x/n),
> >> >> series expansion of ln cos(x/n) has Bernoulli numbers
> >> >> in its coefficients.
> >> >>
> >> >> Obtained double-sum series then should be transformed
> >> >> a bit and appropriately truncated so that it has sufficient
> precision,
> >> >> and then numerical integration performed.
> >> >>
> >> >> The second expression (expansion of pi/8) is written in terms
> >> >> of integrals with different cosine terms and the same infinite
> >> >> product term, so truncation and numerical integration has to be done
> >> >> with even higher precision for m=1, etc.
> >> >>
> >> >> In short, there is quite a bit of work to get this through in J.
> >> >>
> >> >>
> >> >>
> >> >>>
> >> >>> R.E. Boss
> >> >>>
> >> >>>
> >> >>>> -----Oorspronkelijk bericht-----
> >> >>>> Van: programming-boun...@jsoftware.com
> >> >>>> [mailto:programming-boun...@jsoftware.com] Namens Viktor Cerovski
> >> >>>> Verzonden: dinsdag 15 mei 2012 18:54
> >> >>>> Aan: programming@jsoftware.com
> >> >>>> Onderwerp: Re: [Jprogramming] Challenge 12(?)
> >> >>>>
> >> >>>>
> >> >>>>
> >> >>>> R.E.  Boss wrote:
> >> >>>> >
> >> >>>> > I scanned a part of Exploratory Experimentation and Computation,
> >> >>>> > https://www.opendrive.com/files?57384074_sCfMP , where two
> >> >>>> > statements are made about a very rapidly convergent series.
> >> >>>> >
> >> >>>> > 1. The first term coincides with (pi % 8) in the first 42 digits
> >> >>>> > 2. The first 2 terms even give 500 digits
> >> >>>> >
> >> >>>> > How can these two statements be confirmed (or rejected) with J?
> >> >>>> >
> >> >>>> They can be confirmed by calculating the integrals.
> >> >>>>
> >> >>>> Bernoulli numbers are involved among other things, and Roger's
> essay
> >> >>>> http://www.jsoftware.com/jwiki/Essays/Bernoulli%20Numbers
> >> >>>> gives
> >> >>>>
> >> >>>> B0=: 3 : 0
> >> >>>>  b=. ,1x
> >> >>>>  for_m. }.i.x: y do. b=. b,(1+m)%~-+/b*(i.m)!1+m end.
> >> >>>> )
> >> >>>>
> >> >>>> which can be shortened to:
> >> >>>>
> >> >>>> B0t=: [: ([ , +/@:(* i.!>:) -@% 1+])~/ }:@i.@-,1:
> >> >>>>
> >> >>>>    B0 20
> >> >>>> 1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30 0 5r66 0 _691r2730 0 7r6 0
> >> _3617r510 0
> >> >>>> 43867r798 0
> >> >>>>
> >> >>>>    B0t 20x
> >> >>>> 1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30 0 5r66 0 _691r2730 0 7r6 0
> >> _3617r510 0
> >> >>>> 43867r798 0
> >> >>>>
> >> >>>>    ts 'y0=.B0 200'
> >> >>>> 1.85257 362496
> >> >>>>
> >> >>>>    ts 'y0t=.B0t 200x'
> >> >>>> 1.8853 293888
> >> >>>>
> >> >>>>    y0-:y0t
> >> >>>> 1
> >> >>>>
> >> >>>>
> >> >>>>
> >> >>>>
> >> >>>>
> >> >>>> >
> >> >>>> > (No deadlines apply.)
> >> >>>> >
> >> >>>> >
> >> >>>> > R.E. Boss
> >> >>>> >
> >> >>>> >
> >> ----------------------------------------------------------------------
> >> >>>> > For information about J forums see
> >> http://www.jsoftware.com/forums.htm
> >> >>>> >
> >> >>>> >
> >> >>>>
> >> >>>> --
> >> >>>> View this message in context:
> >> >>>>
> >>
> http://old.nabble.com/Challenge-12%28-%29-tp33844136s24193p33849223.html
> >> >>>> Sent from the J Programming mailing list archive at Nabble.com.
> >> >>>>
> >> >>>>
> ----------------------------------------------------------------------
> >> >>>> For information about J forums see
> >> http://www.jsoftware.com/forums.htm
> >> >>>
> >> >>>
> ----------------------------------------------------------------------
> >> >>> For information about J forums see
> http://www.jsoftware.com/forums.htm
> >> >>>
> >> >>>
> >> >>
> >> >> --
> >> >> View this message in context:
> >>
> http://old.nabble.com/Challenge-12%28-%29-tp33844136s24193p33877568.html
> >> >> Sent from the J Programming mailing list archive at Nabble.com.
> >> >>
> >> >>
> ----------------------------------------------------------------------
> >> >> For information about J forums see
> http://www.jsoftware.com/forums.htm
> >> >----------------------------------------------------------------------
> >> >For information about J forums see http://www.jsoftware.com/forums.htm
> >> >
> >> >
> >> ----------------------------------------------------------------------
> >> For information about J forums see http://www.jsoftware.com/forums.htm
> >>
> >----------------------------------------------------------------------
> >For information about J forums see http://www.jsoftware.com/forums.htm
> >
> >
> >
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to