Roger, you first example below should have been (bernoulli i.9) rather than 
(bernoulli i.9x). You modified the line before typing Enter, I guess. 



>________________________________
> Fra: Roger Hui <rogerhui.can...@gmail.com>
>Til: Programming forum <programming@jsoftware.com> 
>Sendt: 5:16 tirsdag den 22. maj 2012
>Emne: Re: [Jprogramming] Challenge 12(?)
> 
>Or use extended precision arguments.  e.g.
>
>   bernoulli=: ! * (% ^ - 1:) t.
>
>   bernoulli i.9x
>1 _0.5 0.166667 _4.16334e_17 _0.0333333 _1.30104e_17 0.0238095 _1.76074e_16
>_0.0333333
>
>   bernoulli i.9x
>1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30
>
>
>
>On Mon, May 21, 2012 at 4:12 PM, Bo Jacoby <bojac...@yahoo.dk> wrote:
>
>> (|**) gets rid of the rounding errors around 0.
>>
>>    (|**) bernoulli i.9
>> 1 _0.5 0.166667 0 _0.0333333 0 0.0238095 0 _0.0333333
>>
>>
>>
>>
>>
>>
>> >________________________________
>> > Fra: Raul Miller <rauldmil...@gmail.com>
>> >Til: Programming forum <programming@jsoftware.com>
>> >Sendt: 21:39 mandag den 21. maj 2012
>> >Emne: Re: [Jprogramming] Challenge 12(?)
>> >
>> >Based on the mathworld page, this looks like an implementation of
>> >Bernoulli numbers in J:
>> >
>> >   bernoulli=: ! * (% ^ - 1:) t.
>> >
>> >Example use:
>> >
>> >      bernoulli i. 9
>> >1 _0.5 0.166667 _4.16334e_17 _0.0333333 _1.30104e_17 0.0238095
>> >_1.76074e_16 _0.0333333
>> >
>> >The "zero" values are not quite zero, but that's a limitation of floating
>> point.
>> >
>> >--
>> >Raul
>> >
>> >On Sun, May 20, 2012 at 6:07 AM, Viktor Cerovski
>> ><viktor.cerov...@gmail.com> wrote:
>> >> R.E.  Boss wrote:
>> >>> What is the relation between the integrals (
>> >>> http://www.jsoftware.com/jwiki/Pi/AConvergentSeries ) and the
>> Bernoulli
>> >>> numbers? Or
>> >>> where can I find it?
>> >>
>> >> The first integral has the form:
>> >>
>> >>  integral cos(2x) * product_n cos(x/n) dx
>> >>
>> >> When you write the product of cos(x/n) as exp of sum of ln cos(x/n),
>> >> series expansion of ln cos(x/n) has Bernoulli numbers
>> >> in its coefficients.
>> >>
>> >> Obtained double-sum series then should be transformed
>> >> a bit and appropriately truncated so that it has sufficient precision,
>> >> and then numerical integration performed.
>> >>
>> >> The second expression (expansion of pi/8) is written in terms
>> >> of integrals with different cosine terms and the same infinite
>> >> product term, so truncation and numerical integration has to be done
>> >> with even higher precision for m=1, etc.
>> >>
>> >> In short, there is quite a bit of work to get this through in J.
>> >>
>> >>
>> >>
>> >>>
>> >>> R.E. Boss
>> >>>
>> >>>
>> >>>> -----Oorspronkelijk bericht-----
>> >>>> Van: programming-boun...@jsoftware.com
>> >>>> [mailto:programming-boun...@jsoftware.com] Namens Viktor Cerovski
>> >>>> Verzonden: dinsdag 15 mei 2012 18:54
>> >>>> Aan: programming@jsoftware.com
>> >>>> Onderwerp: Re: [Jprogramming] Challenge 12(?)
>> >>>>
>> >>>>
>> >>>>
>> >>>> R.E.  Boss wrote:
>> >>>> >
>> >>>> > I scanned a part of Exploratory Experimentation and Computation,
>> >>>> > https://www.opendrive.com/files?57384074_sCfMP , where two
>> >>>> > statements are made about a very rapidly convergent series.
>> >>>> >
>> >>>> > 1. The first term coincides with (pi % 8) in the first 42 digits
>> >>>> > 2. The first 2 terms even give 500 digits
>> >>>> >
>> >>>> > How can these two statements be confirmed (or rejected) with J?
>> >>>> >
>> >>>> They can be confirmed by calculating the integrals.
>> >>>>
>> >>>> Bernoulli numbers are involved among other things, and Roger's essay
>> >>>> http://www.jsoftware.com/jwiki/Essays/Bernoulli%20Numbers
>> >>>> gives
>> >>>>
>> >>>> B0=: 3 : 0
>> >>>>  b=. ,1x
>> >>>>  for_m. }.i.x: y do. b=. b,(1+m)%~-+/b*(i.m)!1+m end.
>> >>>> )
>> >>>>
>> >>>> which can be shortened to:
>> >>>>
>> >>>> B0t=: [: ([ , +/@:(* i.!>:) -@% 1+])~/ }:@i.@-,1:
>> >>>>
>> >>>>    B0 20
>> >>>> 1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30 0 5r66 0 _691r2730 0 7r6 0
>> _3617r510 0
>> >>>> 43867r798 0
>> >>>>
>> >>>>    B0t 20x
>> >>>> 1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30 0 5r66 0 _691r2730 0 7r6 0
>> _3617r510 0
>> >>>> 43867r798 0
>> >>>>
>> >>>>    ts 'y0=.B0 200'
>> >>>> 1.85257 362496
>> >>>>
>> >>>>    ts 'y0t=.B0t 200x'
>> >>>> 1.8853 293888
>> >>>>
>> >>>>    y0-:y0t
>> >>>> 1
>> >>>>
>> >>>>
>> >>>>
>> >>>>
>> >>>>
>> >>>> >
>> >>>> > (No deadlines apply.)
>> >>>> >
>> >>>> >
>> >>>> > R.E. Boss
>> >>>> >
>> >>>> >
>> ----------------------------------------------------------------------
>> >>>> > For information about J forums see
>> http://www.jsoftware.com/forums.htm
>> >>>> >
>> >>>> >
>> >>>>
>> >>>> --
>> >>>> View this message in context:
>> >>>>
>> http://old.nabble.com/Challenge-12%28-%29-tp33844136s24193p33849223.html
>> >>>> Sent from the J Programming mailing list archive at Nabble.com.
>> >>>>
>> >>>> ----------------------------------------------------------------------
>> >>>> For information about J forums see
>> http://www.jsoftware.com/forums.htm
>> >>>
>> >>> ----------------------------------------------------------------------
>> >>> For information about J forums see http://www.jsoftware.com/forums.htm
>> >>>
>> >>>
>> >>
>> >> --
>> >> View this message in context:
>> http://old.nabble.com/Challenge-12%28-%29-tp33844136s24193p33877568.html
>> >> Sent from the J Programming mailing list archive at Nabble.com.
>> >>
>> >> ----------------------------------------------------------------------
>> >> For information about J forums see http://www.jsoftware.com/forums.htm
>> >----------------------------------------------------------------------
>> >For information about J forums see http://www.jsoftware.com/forums.htm
>> >
>> >
>> ----------------------------------------------------------------------
>> For information about J forums see http://www.jsoftware.com/forums.htm
>>
>----------------------------------------------------------------------
>For information about J forums see http://www.jsoftware.com/forums.htm
>
>
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to