Github user jkbradley commented on a diff in the pull request: https://github.com/apache/spark/pull/20686#discussion_r173582018 --- Diff: mllib/src/test/scala/org/apache/spark/ml/feature/OneHotEncoderSuite.scala --- @@ -90,23 +96,29 @@ class OneHotEncoderSuite val encoder = new OneHotEncoder() .setInputCol("size") .setOutputCol("encoded") - val output = encoder.transform(df) - val group = AttributeGroup.fromStructField(output.schema("encoded")) - assert(group.size === 2) - assert(group.getAttr(0) === BinaryAttribute.defaultAttr.withName("small").withIndex(0)) - assert(group.getAttr(1) === BinaryAttribute.defaultAttr.withName("medium").withIndex(1)) + testTransformerByGlobalCheckFunc[(Double)](df, encoder, "encoded") { rows => + val group = AttributeGroup.fromStructField(rows.head.schema("encoded")) + assert(group.size === 2) + assert(group.getAttr(0) === BinaryAttribute.defaultAttr.withName("small").withIndex(0)) + assert(group.getAttr(1) === BinaryAttribute.defaultAttr.withName("medium").withIndex(1)) + } } - test("input column without ML attribute") { + + ignore("input column without ML attribute") { --- End diff -- Let's keep the test but limit it to batch. People should switch to OneHotEncoderEstimator anyways.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org