Github user jkbradley commented on a diff in the pull request:

    https://github.com/apache/spark/pull/20686#discussion_r173582122
  
    --- Diff: 
mllib/src/test/scala/org/apache/spark/ml/feature/OneHotEncoderSuite.scala ---
    @@ -90,23 +96,29 @@ class OneHotEncoderSuite
         val encoder = new OneHotEncoder()
           .setInputCol("size")
           .setOutputCol("encoded")
    -    val output = encoder.transform(df)
    -    val group = AttributeGroup.fromStructField(output.schema("encoded"))
    -    assert(group.size === 2)
    -    assert(group.getAttr(0) === 
BinaryAttribute.defaultAttr.withName("small").withIndex(0))
    -    assert(group.getAttr(1) === 
BinaryAttribute.defaultAttr.withName("medium").withIndex(1))
    +    testTransformerByGlobalCheckFunc[(Double)](df, encoder, "encoded") { 
rows =>
    +      val group = 
AttributeGroup.fromStructField(rows.head.schema("encoded"))
    +      assert(group.size === 2)
    +      assert(group.getAttr(0) === 
BinaryAttribute.defaultAttr.withName("small").withIndex(0))
    +      assert(group.getAttr(1) === 
BinaryAttribute.defaultAttr.withName("medium").withIndex(1))
    +    }
       }
     
    -  test("input column without ML attribute") {
    +
    +  ignore("input column without ML attribute") {
    --- End diff --
    
    Let's keep the test but limit it to batch. People should switch to 
OneHotEncoderEstimator anyways.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to