On 9/23/07, cwitty <[EMAIL PROTECTED]> wrote:
> Here's one (heavily biased) example:
>
> sage: sum([sqrt(AA(i)) for i in range(1, 1000)])
> [21065.833110879048 .. 21065.833110879056]
>
> I'm pretty sure that doing computations with this number algebraically
> requires dealing with polynomials of degree at least 2^168 (there are
> 168 primes less than 1000), which is obviously impossible.
>

It is also possible to do very fast arithmetic in QQbar building on AA
as illustrated below:

sage: R.<x> = AA[]
sage: Q.<i> = R.quotient(x^2 + 1)
sage: w = i * AA(3).sqrt(); w
[1.7320508075688771 .. 1.7320508075688775]*i
sage: omega = (1 + w)/2; omega
[0.86602540378443859 .. 0.86602540378443871]*i + 1/2
sage: omega^3
[-1.0000000000000003 .. -0.99999999999999988]
sage: omega + AA(5).sqrt()
[0.86602540378443859 .. 0.86602540378443871]*i + [2.7360679774997893
.. 2.7360679774997899]
sage: z1 = omega = (1 + w)/2; omega
[0.86602540378443859 .. 0.86602540378443871]*i + 1/2
sage: z1 = omega = (1 + w)/2 + sqrt(AA(5))
sage: z1
[0.86602540378443859 .. 0.86602540378443871]*i + [2.7360679774997893
.. 2.7360679774997899]
sage: z1^10
[2882.8577427505738 .. 2882.8577427505789]*i + [-37786.733390210728 ..
-37786.733390210720]
sage: (z1^10)[0].minpoly()
x^2 + 37851*x + 9713701/4
sage: (z1^10)[1].minpoly()
x^4 - 17754903/2*x^2 + 75340716089409/16


This could probably be useful for some applications.

William

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to