Re: [obm-l] Sobre Recorrência

2018-04-23 Por tôpico luciano rodrigues
Dá uma olhada nesse material: http://repositorio.unb.br/bitstream/10482/17255/1/2014_MarcusViniciusPereira.pdf > Em 23 de abr de 2018, às 19:48, Bruno Lopes > escreveu: > > Prezados Colegas. > > Boa noite. > > Para quem quer iniciar os estudos sobre Recorrência, qual a bibliografia? > >

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Questão de derivada

2018-04-23 Por tôpico Igor Caetano Diniz
na verdade eu não fiz rsrs. Eu queria ver um modo claro de mostrar. Se não puder usar L'Hospital, acho que tem que fazer uma sequência por baixo e uma por cima aplicando TVM em cada intervalo. Aí usa o fato dessa sequencia ser limitada, e monotona, portanto, convergente. Logo lim f'(xn) = L tanto

[obm-l] Sobre Recorrência

2018-04-23 Por tôpico Bruno Lopes
Prezados Colegas. Boa noite. Para quem quer iniciar os estudos sobre Recorrência, qual a bibliografia? Já separei o livro Matemática do Ensino Médio - Vol 2, da SBM. Gostaria de alguma indicação com problemas iniciais mostrando a montagem das equações de recorrência. Agradeço desde já. Bruno

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Questão de derivada

2018-04-23 Por tôpico Artur Steiner
Eu li errado, temos que lim x --> 0 f' (x) = L. Assim, a Regra de l' Hopital conforme mostrei demonstra que, de fato, f'(c) = L. Mas o que vc fez não mostra que f'(c) = L. Artur Costa Steiner Em Seg, 23 de abr de 2018 14:31, Igor Caetano Diniz escreveu: > Se a questão tivesse um intervalo exp

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Inequação Modular

2018-04-23 Por tôpico Pedro José
Boa tarde! Se x <0 não precisa resolver, não tem solução. |x-2|>2 e -x. |×+2| >0. Portanto será sempre maior do que dois. Saudações, PJMS. Em 23 de abr de 2018 16:57, "Luiz Antonio Rodrigues" escreveu: > Olá, Rodrigo! > Olá, Claudio! > Muito obrigado pela ajuda! > Um abração! > Luiz > > On Mon,

[obm-l] Re: [obm-l] Re: [obm-l] Inequação Modular

2018-04-23 Por tôpico Luiz Antonio Rodrigues
Olá, Rodrigo! Olá, Claudio! Muito obrigado pela ajuda! Um abração! Luiz On Mon, Apr 23, 2018, 3:09 PM Rodrigo Ângelo wrote: > Olá, Luiz Antonio > > Não é muito sofisticado, mas eu geralmente analiso separadamente: > Se x >= 0, então: > x.|x+2| = | x(x+2) | > > |x-2| - | x(x+2) | < 1 > |x-2| < 1

[obm-l] Re: [obm-l] Inequação Modular

2018-04-23 Por tôpico Rodrigo Ângelo
Olá, Luiz Antonio Não é muito sofisticado, mas eu geralmente analiso separadamente: Se x >= 0, então: x.|x+2| = | x(x+2) | |x-2| - | x(x+2) | < 1 |x-2| < 1 + | x(x+2) | 1 + | x(x+2) | > |x-2| | x(x+2) | > |x-2| - 1 x(x+2) < 1 - |x-2| ou x(x+2) > |x-2| - 1 |x-2|< 1 - x(x

[obm-l] Re: [obm-l] Re: [obm-l] Questão de derivada

2018-04-23 Por tôpico Igor Caetano Diniz
Se a questão tivesse um intervalo explícito [a,b] e diferenciável em todo ponto (a,b) exceto possivelmente num ponto c em (a,b) tal que lim f '(x) = L, x-> c, o que eu fiz estaria correto? 2018-04-23 14:11 GMT-03:00 Artur Steiner : > Como f é contínua em 0, então, pela regra de L'Hopital, > > lim

[obm-l] Re: [obm-l] Questão de derivada

2018-04-23 Por tôpico Artur Steiner
Como f é contínua em 0, então, pela regra de L'Hopital, lim x --> 0+ (f(x) - f0))/(x - 0) = lim x --> 0+ f'(x) = L Pela definição de derivada lateral, o limite do primeiro membro é a derivada à direita de 0. É só o que podemos concluir do enunciado. Nada garante que a derivada à esquerda de 0 se

Re: [obm-l] Inequação Modular

2018-04-23 Por tôpico Claudio Buffara
Trate separadamente os casos: X < -2, -2 <= x < 2, e 2 <= x Enviado do meu iPhone Em 23 de abr de 2018, à(s) 13:21, Luiz Antonio Rodrigues escreveu: > Olá, pessoal! > Estou tentando resolver esta inequação: > > |x-2| - x.|x + 2| < 1 > > Tentei a técnica do "varalzinho" mas não deu cer

[obm-l] Re: [obm-l] Re: [obm-l] Questão de derivada

2018-04-23 Por tôpico Igor Caetano Diniz
Então, Se existem os limites laterais, lim f ' (0-) = lim f ' (0+) então, defina q(x) = [f(x) - f(0)]/x. Para todo x<0, existe y1 entre x e 0 tal que f ' (y) = q(x). Analogamente para x>0, existe z1 entre 0 e x tal que f ' (z) = q(x). Defina r(x,0) a distancia de x para 0 Então, seja yn = yn-1 + r

[obm-l] Inequação Modular

2018-04-23 Por tôpico Luiz Antonio Rodrigues
Olá, pessoal! Estou tentando resolver esta inequação: |x-2| - x.|x + 2| < 1 Tentei a técnica do "varalzinho" mas não deu certo! Será que alguém pode me ajudar? Não quero resolver graficamente... Muito obrigado e um abraço! Luiz -- Esta mensagem foi verificada pelo sistema de antiv�rus e acred

[obm-l] Re: [obm-l] Questão de derivada

2018-04-23 Por tôpico Bernardo Freitas Paulo da Costa
2018-04-22 22:36 GMT-03:00 Igor Caetano Diniz : > Boa noite, > Gostaria de uma ajuda numa questão. Primeiro saber se pensei corretamente na > maneira (1) e se é possível resolver como pensei também na maneira (2). > Aí vai: > Questão 5.3.8 do livro do Stephen Abbot, Understanding Analysis: > > Assu