Em Qui, 22 de mar de 2018 14:55, Artur Costa Steiner
escreveu:
> OK!
>
> Ests prova vale para raízes positivas, certo? Para n par, há também uma
> raiz negativa.
>
> Para raízes positivas, eu dei uma prova um pouco deferente da sua para a
> irracionalidade de x, porque tinha provado antes que as
OK!
Ests prova vale para raízes positivas, certo? Para n par, há também uma
raiz negativa.
Para raízes positivas, eu dei uma prova um pouco deferente da sua para a
irracionalidade de x, porque tinha provado antes que as raízes não triviais
estão em (1, e), no qual o único inteiro é 2. Depois, tam
Seja x um número real diferente de n tal que x^n = n^x ==> x = n^(x/n).
Se x for transcendente, não há o que provar.
Suponhamos, assim, que x seja algébrico.
O teorema de Gelfond-Schneider diz que se a e b são algébricos, com a <> 0,
a <> 1 e b irracional, então a^b é transcendente.
n é algéb
Ah Deus! Esqueci de dizer, raízes não triviais, distintas de n.
Artur Costa Steiner
Em Qua, 21 de mar de 2018 18:12, Claudio Buffara
escreveu:
> Tá certo isso? Pois, para todo n natural, n sempre é raiz de x^n = n^x.
>
> 2018-03-21 16:45 GMT-03:00 Artur Steiner :
>
>> Mostre que, para todo inte
4 matches
Mail list logo