Boa tarde!
Bernardo,
Realmente eu falhei. Fiquei com a expressão |x+3| < 4 na cabeça. Até uso um
delta, e comento que não pode ser maior que 4.
Saudações,
PJMS
Em 25 de abr de 2018 22:33, "Jaare Oregim"
escreveu:
>
>
> 2018-04-25 21:30 GMT-03:00 Bernardo Freitas Paulo da Costa <
> bernardo...@gm
2018-04-25 21:30 GMT-03:00 Bernardo Freitas Paulo da Costa <
bernardo...@gmail.com>:
> 2018-04-25 20:41 GMT-03:00 Claudio Buffara :
> > O [...]
> "Determine r > 0 tal que [ |x+3| < r => (A^2 - 10A + 9 > 0 para todo A
> real) ]."
>
> Que continua com o "problema" de ter um "x" livre. Daí, a propos
Verdade! Reparei agora que deve ser r > 0.
Então provavelmente o "para todo x real" não deveria estar lá.
Neste caso, vira um problema com mais cara de EM:
Achar todos os r > 0 tais que
SE x pertence ao intervalo (-3-r , -3+r )
ENTÃO x^2 - 10x + 9 > 0
x^2 - 10x + 9 > 0 sss x pertence a (-inf,
Olá, Bernardo!
Boa noite!
Vou tentar fazer a resolução graficamente...
Muito obrigado!
Um abraço!
Luiz
On Wed, Apr 25, 2018, 9:55 PM Pedro José wrote:
> Boa noite!
> Cláudio,
> o problema tem restrição r>0. Não dá para seguir nessa linha de r< 0.
> Saudações,
> PJMS
>
> Em 25 de abr de 2018 21:4
Boa noite!
Cláudio,
o problema tem restrição r>0. Não dá para seguir nessa linha de r< 0.
Saudações,
PJMS
Em 25 de abr de 2018 21:42, "Bernardo Freitas Paulo da Costa" <
bernardo...@gmail.com> escreveu:
> 2018-04-25 20:20 GMT-03:00 Pedro José :
> > Boa tarde!
> > Realmente o enunciado está mal fe
5 matches
Mail list logo