----- Original Message -----
From: <rogalt...@aol.com>

> The dissolved amount of AgCl exists in concentration up to the
solubility
> constant, and exists as discrete, free Ag+ and Cl- ions.
Concentrations of
> these ions higher
>  than Ksp combine to form the solid AgCl. In other words, if a
teaspoon
>  of the salt AgCl is stired into a litre of water a small amount will
>  dissolve into Ag+ and Cl- ions and the rest remains a solid.
>
> Ivan: Exactly. Phew!

Talking at cross purposes Roger.

>  > ALL the ionic silver would have precipitated. Don't you think?
>
>  Yes, all but about 0.01ppm is precipitated.
>  Note, that this does not mean that the rest is not absorbed into the
>  body in the small intestine.
>
> Ivan: Seems like awfully small potatoes, don't you think?

Not even a MacDonalds french fry.

>  Van der Waals forces and other as yet not understood attractive
forces.
>  A colloid is a dynamic system of dispersive and attractive forces.
>
> Ivan: You still haven't explained what forces will push these
INDIVIDUALLY
> charged silver ions together into a tiny little ball

This is very complicated Roger, and is not fully understood by far
greater minds than mine. Van de Waals force is an attractive force that
like particles have for each other over short distances. Collisions
between ions or particles that have a particular vector and energy
contributes, and there is some evidence that like charges can attract,
but the work in this area is particularly obscure. However, hydration of
ions as they leave the anode (point of highest density) limits this
aggrigation, which is what we aim for , no?

>  Most of the large particles found in LVDC CS are those that have
formed
>  dendrites on the cathode and have regained electrons, and which are
then
>  dislodged and re-enter the colloid.
>
> Ivan: So, in fact, these larger particles DO NOT HAVE INDIVIDUAL
silver ions.
> Isn't that what you're saying? At what CS particle size does each
silver ion
> within the particle begin to lose its individual charge? Why does this
occur?
> Can you cite studies that provides evidence for this phenomenon?

Roger, when silver ions find their way to the cathode they adhere
loosely to it and to other ions that preceded them. Electrons are
supplied to them from the cathode, but I have read that this is not an
instantaneous effect, as the electrons must travel through a mass that
is not as conductive as the crystaline metal would be. As this
accululation grows it forms a tree like structure termed dendrites (from
the latin tree like?) and when disturbed, large particles may break free
and enter the sol. These particles may still have some atoms missing
electrons or not.
Generally these particles will settle out in short order, as Marshall
notes, but some may remain suspended for a considerable time, and cause
the colloid to be somewhat turbid.

I can't remember the reference that described this phenomena but I will
look through my notes, perhaps I noted the reference.

'Till later,
Ivan.


---
Outgoing mail is certified Virus Free.
Checked by AVG anti-virus system (http://www.grisoft.com).
Version: 6.0.215 / Virus Database: 101 - Release Date: 17/11/2000


--
The silver-list is a moderated forum for discussion of colloidal silver.

To join or quit silver-list or silver-digest send an e-mail message to: 
silver-list-requ...@eskimo.com  -or-  silver-digest-requ...@eskimo.com
with the word subscribe or unsubscribe in the SUBJECT line.

To post, address your message to: silver-list@eskimo.com
Silver-list archive: http://escribe.com/health/thesilverlist/index.html
List maintainer: Mike Devour <mdev...@eskimo.com>