IMHO, the muons come from hadronization of the energy stored by the
metallic hydrogen. The energy transferred from hadron decay to the metallic
hydrogen accumulates and is eventually converted to mesons. This energy
storage mechanism might be disrupted through the destruction of the
metallic hydrogen in a runtime cycle. Such an energy store release might be
accomplished with the arc discharge to produce a magnetic field strong
enough to release the energy stored by the metallic hydrogen before enough
is accumulated to catalyze meson production.

As another way,  a thick blanket of filbe could also convert the muons to
heat.

https://en.wikipedia.org/wiki/FLiBe

On Fri, Dec 15, 2017 at 4:08 PM, JonesBeene <jone...@pacbell.net> wrote:

>
>
> *From: *Axil Axil <janap...@gmail.com>
>
>
>
>    - But Holmlid get a high energy reaction from excitation from a very
>    low powered laser. A petawatt laser is extreme overkill.
>
>
>
>
>
> Yes - but the problem with the Holmlid approach (if we take his claims at
> face value) is that the output energy is largely in the form of muons.
>
>
>
> There is no obvious way to capture muons efficiently since their decay
> will occur far away from the reactor. IOW it is hard to convert that kind
> of reaction into a usable form and it may be hard to scale. Perhaps that
> detail/problem (conversion) is what Holmlid is working on now. I would love
> to see his comments on this paper from Hora.
>
>
>
> In contrast, the boron fusion output is mostly energetic alpha particles,
> which can be thermalized easily or better yet, converted directly into
> electricity. Plus, there is some doubt about the identity of Holmlid’s
> copious muons and no replication has been published.
>
>
>
> If Holmlid were to modify his device for the proton-boron reaction, he
> could change a lot of skepticism into belief since it would be easier to
> measure the results, for one thing.
>
>
>
> Did you notice the mention of super heavy hydrogen in the Hora paper? That
> is most curious given the recent history of Hora and Holmlid working
> together. Is Hora referring to UDH?
>
>
>
> It may seem that Hora and Holmlid had some kind of falling-out since there
> is no mention of the earlier work and tons of references with no credits.
>
>
>
> More questions than answers, as of now.
>
>
>
>
>
>
>
> Here is Holmlid’s patent application -- which is easily amenable to
> hydrogen boron fusion
>
> https://www.google.com/patents/EP2680271A1?cl=en
>
> Imagine collecting the dense hydrogen on a substrate of boron, which then
> becomes the target for a laser pulse – or double pulse.
>
> Holmlid suggests the dense state can be manufactured and collected as an
> independent step. The ideal way to convert it in a second step would seem
> to be boron fusion.
>
> Holmlid would be wise to specifically add boron fusion to his application.
>
> Obviously if the new kind of “ponderomotive fusion” can be made to work
> with normal hydrogen, the dense state should even be better as a starting
> point…
>
> …unless of course the Hora suggestion is indeed making the dense hydrogen
> in the first pulse and reacting it in the second pulse.
>
> In that case, he should have credited Holmlid.
>
>
>

Reply via email to