The following tables now include more reaction equations, an extra energy entry for fusion energy minus deflated electron binding energy, and some typo corrections:

http://www.mtaonline.net/~hheffner/ZrLENR.pdf

http://www.mtaonline.net/~hheffner/PdLENR.pdf

http://www.mtaonline.net/~hheffner/AlLENR.pdf

http://www.mtaonline.net/~hheffner/NiLENR.pdf

http://www.mtaonline.net/~hheffner/TiLENR.pdf

http://www.mtaonline.net/~hheffner/CaLENR.pdf

Something I find very interesting is the way lattice elements can act in a purely catalytic fashion. Some examples follow.

27Al13 + 2 D --> 29Si14 + 2H1 + 17.833 MeV [5.753 MeV] ( 11 ) 27Al13 + 2 D --> 30Si14 + 1H1 + 26.218 MeV [14.138 MeV] ( 12 ) 27Al13 + 5 D --> 27Al13 + 10B5 + 53.628 MeV [19.056 MeV] ( 42 ) 27Al13 + 6 D --> 27Al13 + 12C6 + 78.814 MeV [35.652 MeV] ( 52 )

40Ca20 + 2 D --> 40Ca20 + 4He2 + 23.847 MeV [7.723 MeV] ( 4 ) 40Ca20 + 6 D --> 40Ca20 + 12C6 + 78.814 MeV [24.349 MeV] ( 17 ) 40Ca20 + 8 D --> 40Ca20 + 16O8 + 109.822 MeV [33.305 MeV] ( 22 )

58Ni28 + 2 D --> 58Ni28 + 4He2 + 23.847 MeV [3.986 MeV] ( 13 ) 58Ni28 + 3 D --> 58Ni28 + 6Li3 + 25.321 MeV [-5.173 MeV] ( 20 ) 58Ni28 + 5 D --> 58Ni28 + 10B5 + 53.628 MeV [00.501 MeV] ( 36 )

46Ti22 + D --> 47Ti22 + 1H1 + 6.653 MeV [-1.552 MeV] ( 1 ) 46Ti22 + 2 D --> 46Ti22 + 4He2 + 23.847 MeV [6.924 MeV] ( 16 ) 46Ti22 + 2 D --> 47Ti22 + 3He2 + 12.146 MeV [-4.776 MeV] ( 17 ) 46Ti22 + 3 D --> 46Ti22 + 6Li3 + 25.321 MeV [-0.822 MeV] ( 28 )

102Pd46 + 2 D --> 102Pd46 + 4He2 + 23.847 MeV [-3.072 MeV] ( 44 ) 102Pd46 + 3 D --> 102Pd46 + 6Li3 + 25.321 MeV [-15.660 MeV] ( 59 )

90Zr40 + D --> 91Zr40 + 1H1 + 4.970 MeV [-7.038 MeV] ( 2 ) 90Zr40 + 2 D --> 90Zr40 + 4He2 + 23.847 MeV [-0.595 MeV] ( 21 ) 90Zr40 + 2 D --> 91Zr40 + 3He2 + 10.464 MeV [-13.978 MeV] ( 22 ) 90Zr40 + 3 D --> 90Zr40 + 6Li3 + 25.321 MeV [-11.974 MeV] ( 33 )

What is interesting about this is the lattice elements are much closer to the hydrogen than other hydrogen atoms. If the hydrogen is in the deflated state, it is much more probable it will tunnel to a lattice nucleus. The lattice nucleus can thus act as a catalyst for multiple simultaneous deuteron reactions which would otherwise not be feasible under less than extreme loading conditions.

Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/




Reply via email to