The full picture has not yet emerged. The reactions in which the deflated electron binding energy exceeds the fusion energy are high probability candidates for weak reactions, due to the longevity of the initial fused nucleus, and the prolonged presence of the electrons. The electrons decrease the stability of the neutrons, thus enhancing the probability of neutron beta decay. In some cases the probability of electron capture is also increased. Most important to confirmation of the deflation fusion theory, reactions with very negative net energy (in brackets), but positive fusion energy, are the best candidates for strange exchange reactions and K0 production. These heavy LENR reactions are fostered by use of extreme magnetic field gradients, which can be imposed by ambient fields, or better by powerful coherent EM radiation. Some examples of such reactions are:

90Zr40 + D --> 71Ga31 + 21Ne10 + 00.236 MeV [-11.772 MeV] ( 1 )
90Zr40 + D --> 91Zr40 + 1H1 + 4.970 MeV [-7.038 MeV] ( 2 )
90Zr40 + 2 D --> 68Zn30 + 26Mg12 + 23.722 MeV [-0.720 MeV] ( 9 )
90Zr40 + 2 D --> 70Zn30 + 24Mg12 + 20.996 MeV [-3.446 MeV] ( 10 )
90Zr40 + 2 D --> 71Ga31 + 23Na11 + 17.170 MeV [-7.272 MeV] ( 11 )
90Zr40 + 2 D --> 72Ge32 + 22Ne10 + 18.113 MeV [-6.329 MeV] ( 12 )
90Zr40 + 2 D --> 73Ge32 + 21Ne10 + 14.533 MeV [-9.909 MeV] ( 13 )
90Zr40 + 2 D --> 74Ge32 + 20Ne10 + 17.968 MeV [-6.474 MeV] ( 14 )
90Zr40 + 2 D --> 75As33 + 19F9 + 12.024 MeV [-12.418 MeV] ( 15 )
90Zr40 + 2 D --> 76Se34 + 18O8 + 13.538 MeV [-10.904 MeV] ( 16 )
90Zr40 + 2 D --> 77Se34 + 17O8 + 12.911 MeV [-11.531 MeV] ( 17 )
90Zr40 + 2 D --> 78Se34 + 16O8 + 19.266 MeV [-5.176 MeV] ( 18 )
90Zr40 + 2 D --> 79Br35 + 15N7 + 13.470 MeV [-10.972 MeV] ( 19 )
90Zr40 + 2 D --> 82Kr36 + 12C6 + 18.092 MeV [-6.350 MeV] ( 20 )
90Zr40 + 2 D --> 90Zr40 + 4He2 + 23.847 MeV [-0.595 MeV] ( 21 )
90Zr40 + 2 D --> 91Zr40 + 3He2 + 10.464 MeV [-13.978 MeV] ( 22 )
90Zr40 + 2 D --> 93Nb41 + 1H1 + 17.423 MeV [-7.019 MeV] ( 23 )
90Zr40 + 2 D --> 94Mo42 + 25.914 MeV [1.472 MeV] ( 24 )

42Ca20 + D --> 40K19 + 4He2 + 5.699 MeV [-1.979 MeV] ( 26 )
42Ca20 + D --> 43Ca20 + 1H1 + 5.708 MeV [-1.970 MeV] ( 27 )

46Ti22 + D --> 47Ti22 + 1H1 + 6.653 MeV [-1.552 MeV] ( 1 )
46Ti22 + 2 D --> 26Mg12 + 24Mg12 + 12.293 MeV [-4.629 MeV] ( 3 )
46Ti22 + 2 D --> 27Al13 + 23Na11 + 8.872 MeV [-8.051 MeV] ( 4 )
46Ti22 + 2 D --> 28Si14 + 22Ne10 + 11.662 MeV [-5.261 MeV] ( 5 )
46Ti22 + 2 D --> 29Si14 + 21Ne10 + 9.772 MeV [-7.151 MeV] ( 6 )
46Ti22 + 2 D --> 30Si14 + 20Ne10 + 13.621 MeV [-3.302 MeV] ( 7 )
46Ti22 + 2 D --> 31P15 + 19F9 + 8.074 MeV [-8.849 MeV] ( 8 )
46Ti22 + 2 D --> 32S16 + 18O8 + 8.944 MeV [-7.979 MeV] ( 9 )
46Ti22 + 2 D --> 33S16 + 17O8 + 9.541 MeV [-7.382 MeV] ( 10 )
46Ti22 + 2 D --> 34S16 + 16O8 + 16.814 MeV [-0.109 MeV] ( 11 )
46Ti22 + 2 D --> 35Cl17 + 15N7 + 11.057 MeV [-5.865 MeV] ( 12 )
46Ti22 + 2 D --> 38Ar18 + 12C6 + 16.861 MeV [-0.062 MeV] ( 13 )
46Ti22 + 2 D --> 39K19 + 11B5 + 7.285 MeV [-9.638 MeV] ( 14 )
46Ti22 + 2 D --> 40K19 + 10B5 + 3.630 MeV [-13.293 MeV] ( 15 )
46Ti22 + 2 D --> 46Ti22 + 4He2 + 23.847 MeV [6.924 MeV] ( 16 )
46Ti22 + 2 D --> 47Ti22 + 3He2 + 12.146 MeV [-4.776 MeV] ( 17 )

Zr is most interesting because both Zr + D reactions are weak reaction candidates. All the above kinds of candidate reactions must be re-worked to include weak reaction prospects.

Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/




Reply via email to