Bob,

 

I agree with most of what you say. The devil is in the details and we are short 
on details.

 

My great hope is that we will get the data we need from the Swedes this time 
around.

 

Jones

 

 

From: Bob Higgins 

 

Jones and Bob,

 

Jones, you said that:

 

I agree that the BEC is a fiction at elevated temperature, 

 

I don't think Yeong Kim proposes a classical cold temperature BEC as the source 
of his fusion.  He told me that the condensates he has postulated form in 
magnetic traps in the material.  So, at elevated temperature, the atoms are 
coupled by the magnetic field that is trapping them.  I cannot say that I 
understand the rigor of the trap that he proposes, or what it would take to 
make such a trap.  However, I believe Rossi's nano-catalyst is nano-metric iron 
alloyed into the Ni particles.  Such alloys can have extremely high 
permeability and in nanoscale Ni-Fe spots, who knows what kind of magnetic 
(trapping) properties could be found.  I am not willing to rule out such 
magnetically trapped condensates as a possibility.

 

Also, I am not sure the DDL H (H#) combining to D is that far off in energy.  
Consider that the DDL state is regarded as being about 511 keV less than H in 
normal ground state.  The mass energy difference between 2 ground state H atoms 
and a ground state D atom is 1.66 MeV (if I calculated correctly).  Now suppose 
we had this scenario:

 

1) H2 molecule within a resonant coupled string, coupling energy out of the H2 
by evanescent coupling (perhaps within a crack)

 

2) Each of the atoms decrease in energy simultaneously and fractionally until 
reaching the DDL in each atom while still a molecule

 

3) The actual energy of each of the H atoms would have decreased by more than 2 
x (511 keV) because of the Gibbs energy loss in the formation of the H#2 
molecule.  In fact, when the H atoms are in the DDL state, the Gibbs energy 
forming the H#2 molecule may be very large (guess 100 keV).  So, now the H#2 
molecule may only be 1.66 - 2(.511) - (.1) = 538 keV different than the ground 
state D.  Also, the H# is regarded as 50x smaller than a muonic H atom - and 
more much more likely to enter another nucleus.

 

4) Suppose now that the H#2 fuses to D.  There would be 538 keV for the nucleus 
to release.  However, remember that the electron is in tight DDL orbit and it 
will take 511 keV to get that electron back to the ground state.  So, if the 
H#2 fuses and transfers its energy to the electron, most of it will go into 
getting the electron back to the ground state, and then the left over would be 
a high kinetic energy electron (22 keV in this example) that did NOT come from 
the nucleus, but as ionization energy of the left over electron after the 
fusion.

 

5) When this electron is captured it gives up its 22 keV of energy along with 
some minor Bremsstrahlung low energy x-rays.  However, the total energy given 
off before fusion and after will be the 1.66 MeV with much of that going into 
the formation of the H#2 and only a little given off when the fusion occurs.

 

6) Sometimes a single H# or an H#2 gets ejected and becomes the strange 
radiation capable of activating materials external to the test apparatus that 
has been reported by Storms.

     

As you say, if deuterium enrichment is found in analysis of Rossi's 6-month 
test (don't know if they will be allowed to test for this), then it would be a 
very insightful report.

 

I could easily have bungled this proposition.  Please set me straight.

 

Bob Higgins

Reply via email to