[ 
https://issues.apache.org/jira/browse/SPARK-2243?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14392721#comment-14392721
 ] 

Sean Owen commented on SPARK-2243:
----------------------------------

[~sams] in this particular case, can you simply set both of these limits to the 
maximum that you need them to be, like 0.8 in both cases? It doesn't mean you 
can suddenly use 160% of memory of course. But these are just upper limits on 
what the cache/shuffle will consume, and not _also_ inversely limits on how 
much other stuff can use. That is, 80% cache doesn't stop tasks or shuffle from 
using 100% of all memory.

Yes, that means you have to manage the steps of your job carefully so that the 
memory hungry steps don't overlap. But you're already doing that.

Of course you could also throw more resource / memory at this too, but that 
costs £, but then again so does your time. If you're able to use the YARN 
dynamic executor scaling, maybe that's mitigated to some degree (although I 
think it triggers based on active tasks, not memory usage; it would save 
resource when little of anything is running).

Back to the general point: it seems like one motivation is reconfiguration, 
which is not quite the same as making multiple contexts; it should be easier.

> Support multiple SparkContexts in the same JVM
> ----------------------------------------------
>
>                 Key: SPARK-2243
>                 URL: https://issues.apache.org/jira/browse/SPARK-2243
>             Project: Spark
>          Issue Type: New Feature
>          Components: Block Manager, Spark Core
>    Affects Versions: 0.7.0, 1.0.0, 1.1.0
>            Reporter: Miguel Angel Fernandez Diaz
>
> We're developing a platform where we create several Spark contexts for 
> carrying out different calculations. Is there any restriction when using 
> several Spark contexts? We have two contexts, one for Spark calculations and 
> another one for Spark Streaming jobs. The next error arises when we first 
> execute a Spark calculation and, once the execution is finished, a Spark 
> Streaming job is launched:
> {code}
> 14/06/23 16:40:08 ERROR executor.Executor: Exception in task ID 0
> java.io.FileNotFoundException: http://172.19.0.215:47530/broadcast_0
>       at 
> sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624)
>       at 
> org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:156)
>       at 
> org.apache.spark.broadcast.HttpBroadcast.readObject(HttpBroadcast.scala:56)
>       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>       at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:606)
>       at 
> java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
>       at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at 
> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
>       at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>       at 
> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
>       at 
> org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63)
>       at 
> org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139)
>       at 
> java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>       at 
> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
>       at 
> org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62)
>       at 
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:193)
>       at 
> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:45)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:745)
> 14/06/23 16:40:08 WARN scheduler.TaskSetManager: Lost TID 0 (task 0.0:0)
> 14/06/23 16:40:08 WARN scheduler.TaskSetManager: Loss was due to 
> java.io.FileNotFoundException
> java.io.FileNotFoundException: http://172.19.0.215:47530/broadcast_0
>       at 
> sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624)
>       at 
> org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:156)
>       at 
> org.apache.spark.broadcast.HttpBroadcast.readObject(HttpBroadcast.scala:56)
>       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>       at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:606)
>       at 
> java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
>       at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at 
> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
>       at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>       at 
> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
>       at 
> org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63)
>       at 
> org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139)
>       at 
> java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>       at 
> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
>       at 
> org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62)
>       at 
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:193)
>       at 
> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:45)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:745)
> 14/06/23 16:40:08 ERROR scheduler.TaskSetManager: Task 0.0:0 failed 1 times; 
> aborting job
> 14/06/23 16:40:08 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, 
> whose tasks have all completed, from pool 
> 14/06/23 16:40:08 INFO scheduler.DAGScheduler: Failed to run runJob at 
> NetworkInputTracker.scala:182
> [WARNING] 
> org.apache.spark.SparkException: Job aborted: Task 0.0:0 failed 1 times (most 
> recent failure: Exception failure: java.io.FileNotFoundException: 
> http://172.19.0.215:47530/broadcast_0)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1020)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1018)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1018)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604)
>       at scala.Option.foreach(Option.scala:236)
>       at 
> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:604)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190)
>       at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>       at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>       at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>       at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>       at 
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:385)
>       at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>       at 
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>       at 
> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>       at 
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> 14/06/23 16:40:09 INFO dstream.ForEachDStream: metadataCleanupDelay = 3600
> {code}
> So far, we are working on localhost. Any clue about where this error is 
> coming from? Any workaround to solve the issue?



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to