[ https://issues.apache.org/jira/browse/SPARK-2243?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14392860#comment-14392860 ]
Sean Owen commented on SPARK-2243: ---------------------------------- [~sams] the {{SparkContext}} constructor will throw an exception in 1.3 if you try to instantiate a second one. You can turn it off with {{spark.driver.allowMultipleContexts=true}}. Which doesn't make it 100% work but doesn't forbid it outright. I wouldn't recommend disabling it and it's off by default. I think you'd be welcome to suggest a minor doc change. I'm 90% sure I'm right on this. Or else, we'd never see JVMs running out of memory unless the cache was quite full? [~jahubba] I bet that in retrospect it would have been better to make the {{SparkContext}} uninstantiable and access it only via a factory method. Too late for that now. Some of what you're doing sounds like it would be the same even with simultaneous contexts -- you're still setting two sets of config, you're still thinking about resources. I think the forced decoupling makes things harder. I suppose decoupling has its upsides but costs in runtime complexity. That said there's also some classes of use cases that might do well to share both a JVM and {{SparkContext}}. These aren't 100% of use cases but I hope there's good news for some who find this issue and previously thought it was a blocker. > Support multiple SparkContexts in the same JVM > ---------------------------------------------- > > Key: SPARK-2243 > URL: https://issues.apache.org/jira/browse/SPARK-2243 > Project: Spark > Issue Type: New Feature > Components: Block Manager, Spark Core > Affects Versions: 0.7.0, 1.0.0, 1.1.0 > Reporter: Miguel Angel Fernandez Diaz > > We're developing a platform where we create several Spark contexts for > carrying out different calculations. Is there any restriction when using > several Spark contexts? We have two contexts, one for Spark calculations and > another one for Spark Streaming jobs. The next error arises when we first > execute a Spark calculation and, once the execution is finished, a Spark > Streaming job is launched: > {code} > 14/06/23 16:40:08 ERROR executor.Executor: Exception in task ID 0 > java.io.FileNotFoundException: http://172.19.0.215:47530/broadcast_0 > at > sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624) > at > org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:156) > at > org.apache.spark.broadcast.HttpBroadcast.readObject(HttpBroadcast.scala:56) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at > java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at > java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) > at > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40) > at > org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63) > at > org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139) > at > java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) > at > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40) > at > org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62) > at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:193) > at > org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:45) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > 14/06/23 16:40:08 WARN scheduler.TaskSetManager: Lost TID 0 (task 0.0:0) > 14/06/23 16:40:08 WARN scheduler.TaskSetManager: Loss was due to > java.io.FileNotFoundException > java.io.FileNotFoundException: http://172.19.0.215:47530/broadcast_0 > at > sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624) > at > org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:156) > at > org.apache.spark.broadcast.HttpBroadcast.readObject(HttpBroadcast.scala:56) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at > java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at > java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) > at > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40) > at > org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63) > at > org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139) > at > java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) > at > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40) > at > org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62) > at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:193) > at > org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:45) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > 14/06/23 16:40:08 ERROR scheduler.TaskSetManager: Task 0.0:0 failed 1 times; > aborting job > 14/06/23 16:40:08 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, > whose tasks have all completed, from pool > 14/06/23 16:40:08 INFO scheduler.DAGScheduler: Failed to run runJob at > NetworkInputTracker.scala:182 > [WARNING] > org.apache.spark.SparkException: Job aborted: Task 0.0:0 failed 1 times (most > recent failure: Exception failure: java.io.FileNotFoundException: > http://172.19.0.215:47530/broadcast_0) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1020) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1018) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1018) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:604) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > at akka.actor.ActorCell.invoke(ActorCell.scala:456) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > at akka.dispatch.Mailbox.run(Mailbox.scala:219) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:385) > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > 14/06/23 16:40:09 INFO dstream.ForEachDStream: metadataCleanupDelay = 3600 > {code} > So far, we are working on localhost. Any clue about where this error is > coming from? Any workaround to solve the issue? -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org