[ https://issues.apache.org/jira/browse/SPARK-2243?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14502326#comment-14502326 ]
Swaranga Sarma commented on SPARK-2243: --------------------------------------- No, they are different physical/virtual machines and they have separate JVMs. What I meant was that if there were no restrictions on creating spark contexts, then my web application can simply send the client request to any of the hosts in my driver application fleet. If it ends up on a host that already has a streaming context running, it doesn't matter. Driver applications are supposed to be light weight anyway since most of the heavy lifting is done by the cluster and to me there doesn't seem to be a good reason (fundamental to Spark) why we cannot have multiple Spark contexts in the same JVM. > Support multiple SparkContexts in the same JVM > ---------------------------------------------- > > Key: SPARK-2243 > URL: https://issues.apache.org/jira/browse/SPARK-2243 > Project: Spark > Issue Type: New Feature > Components: Block Manager, Spark Core > Affects Versions: 0.7.0, 1.0.0, 1.1.0 > Reporter: Miguel Angel Fernandez Diaz > > We're developing a platform where we create several Spark contexts for > carrying out different calculations. Is there any restriction when using > several Spark contexts? We have two contexts, one for Spark calculations and > another one for Spark Streaming jobs. The next error arises when we first > execute a Spark calculation and, once the execution is finished, a Spark > Streaming job is launched: > {code} > 14/06/23 16:40:08 ERROR executor.Executor: Exception in task ID 0 > java.io.FileNotFoundException: http://172.19.0.215:47530/broadcast_0 > at > sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624) > at > org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:156) > at > org.apache.spark.broadcast.HttpBroadcast.readObject(HttpBroadcast.scala:56) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at > java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at > java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) > at > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40) > at > org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63) > at > org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139) > at > java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) > at > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40) > at > org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62) > at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:193) > at > org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:45) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > 14/06/23 16:40:08 WARN scheduler.TaskSetManager: Lost TID 0 (task 0.0:0) > 14/06/23 16:40:08 WARN scheduler.TaskSetManager: Loss was due to > java.io.FileNotFoundException > java.io.FileNotFoundException: http://172.19.0.215:47530/broadcast_0 > at > sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624) > at > org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:156) > at > org.apache.spark.broadcast.HttpBroadcast.readObject(HttpBroadcast.scala:56) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at > java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at > java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) > at > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40) > at > org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63) > at > org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139) > at > java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837) > at > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) > at > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40) > at > org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62) > at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:193) > at > org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:45) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > 14/06/23 16:40:08 ERROR scheduler.TaskSetManager: Task 0.0:0 failed 1 times; > aborting job > 14/06/23 16:40:08 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, > whose tasks have all completed, from pool > 14/06/23 16:40:08 INFO scheduler.DAGScheduler: Failed to run runJob at > NetworkInputTracker.scala:182 > [WARNING] > org.apache.spark.SparkException: Job aborted: Task 0.0:0 failed 1 times (most > recent failure: Exception failure: java.io.FileNotFoundException: > http://172.19.0.215:47530/broadcast_0) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1020) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1018) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1018) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:604) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > at akka.actor.ActorCell.invoke(ActorCell.scala:456) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > at akka.dispatch.Mailbox.run(Mailbox.scala:219) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:385) > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > 14/06/23 16:40:09 INFO dstream.ForEachDStream: metadataCleanupDelay = 3600 > {code} > So far, we are working on localhost. Any clue about where this error is > coming from? Any workaround to solve the issue? -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org