[ 
https://issues.apache.org/jira/browse/SPARK-2243?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14501525#comment-14501525
 ] 

Swaranga Sarma commented on SPARK-2243:
---------------------------------------

I would like to see this prioritized as well. This will allow me to platformize 
the driver application and deploy it to a fleet of hosts. Clients would submit 
transformation rules expressed via some expression language to a web UI. The 
web UI application would then send this transformation graph to the driver 
application fleet which would convert the submitted expression to Spark RDD 
transformations and submit it to my computation cluster. This has the following 
advantages:

1. Clients don't have to deal with the spark-submit script, they don't even 
have to have a JVM to run a spark streaming/non-streaming computation.
2. My web UI would then not care which host in my driver application fleet 
picks up the new computation. It would be like a traditional request sent to a 
fleet via a VIP.
3. I can then optimize my driver application to keep track of already running 
computations, reuse/cache existing RDDs already created by another streaming 
computation etc for new incoming computation requests.

I have a few more but this should give an idea.

> Support multiple SparkContexts in the same JVM
> ----------------------------------------------
>
>                 Key: SPARK-2243
>                 URL: https://issues.apache.org/jira/browse/SPARK-2243
>             Project: Spark
>          Issue Type: New Feature
>          Components: Block Manager, Spark Core
>    Affects Versions: 0.7.0, 1.0.0, 1.1.0
>            Reporter: Miguel Angel Fernandez Diaz
>
> We're developing a platform where we create several Spark contexts for 
> carrying out different calculations. Is there any restriction when using 
> several Spark contexts? We have two contexts, one for Spark calculations and 
> another one for Spark Streaming jobs. The next error arises when we first 
> execute a Spark calculation and, once the execution is finished, a Spark 
> Streaming job is launched:
> {code}
> 14/06/23 16:40:08 ERROR executor.Executor: Exception in task ID 0
> java.io.FileNotFoundException: http://172.19.0.215:47530/broadcast_0
>       at 
> sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624)
>       at 
> org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:156)
>       at 
> org.apache.spark.broadcast.HttpBroadcast.readObject(HttpBroadcast.scala:56)
>       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>       at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:606)
>       at 
> java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
>       at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at 
> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
>       at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>       at 
> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
>       at 
> org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63)
>       at 
> org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139)
>       at 
> java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>       at 
> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
>       at 
> org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62)
>       at 
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:193)
>       at 
> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:45)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:745)
> 14/06/23 16:40:08 WARN scheduler.TaskSetManager: Lost TID 0 (task 0.0:0)
> 14/06/23 16:40:08 WARN scheduler.TaskSetManager: Loss was due to 
> java.io.FileNotFoundException
> java.io.FileNotFoundException: http://172.19.0.215:47530/broadcast_0
>       at 
> sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1624)
>       at 
> org.apache.spark.broadcast.HttpBroadcast$.read(HttpBroadcast.scala:156)
>       at 
> org.apache.spark.broadcast.HttpBroadcast.readObject(HttpBroadcast.scala:56)
>       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>       at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:606)
>       at 
> java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
>       at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at 
> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
>       at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>       at 
> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
>       at 
> org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63)
>       at 
> org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139)
>       at 
> java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837)
>       at 
> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
>       at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>       at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>       at 
> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
>       at 
> org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62)
>       at 
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:193)
>       at 
> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:45)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:745)
> 14/06/23 16:40:08 ERROR scheduler.TaskSetManager: Task 0.0:0 failed 1 times; 
> aborting job
> 14/06/23 16:40:08 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, 
> whose tasks have all completed, from pool 
> 14/06/23 16:40:08 INFO scheduler.DAGScheduler: Failed to run runJob at 
> NetworkInputTracker.scala:182
> [WARNING] 
> org.apache.spark.SparkException: Job aborted: Task 0.0:0 failed 1 times (most 
> recent failure: Exception failure: java.io.FileNotFoundException: 
> http://172.19.0.215:47530/broadcast_0)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1020)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1018)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1018)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604)
>       at scala.Option.foreach(Option.scala:236)
>       at 
> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:604)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190)
>       at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>       at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>       at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>       at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>       at 
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:385)
>       at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>       at 
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>       at 
> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>       at 
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> 14/06/23 16:40:09 INFO dstream.ForEachDStream: metadataCleanupDelay = 3600
> {code}
> So far, we are working on localhost. Any clue about where this error is 
> coming from? Any workaround to solve the issue?



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to