Tenth theorem proved:

${
  $d x y z a b c u v B $.  $d x y z a b c u v .o. $.  $d a u v ph $.
  mendpadm.a $e |- B = ( Base ` M ) $.
  mendpadm.b $e |- .o. = ( +g ` M ) $.
  mendpadm.d $e |- ( ph -> M e. Mgm ) $.
  mendpadm.e $e |- ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. 
( x .o. ( z .o. y ) ) ) = z ) $.
  $( Lemma for mendpadm. Squares of all elements are equal to each other. $)
  mendpadmlem6 $p |- ( ph -> A. x e. B A. y e. B ( x .o. x ) = ( y .o. y ) 
) $=
    ( vu vv va vb co wceq wral weq oveq2d vc cv wi wal wa mendpadmlem4 id 
oveq2
    wcel oveq12d eqeq1d oveq1 eqeq12d cbvral2vw sylib ad2antrr simpr eqidd 
cmgm
    simplr syl3anc rspc2vd mpd cbvral3vw rspc3v eqtr3d ex alrimiv df-ral 
imbi2i
    mgmcl albii sylbbr syl eqeq2d ) 
ALUBZVPGPZMUBZVRGPZQZMERZLERZBUBZWCGPZCUBZW
    
EGPZQZCERBERAVPEUIZVREUIZVTUCZMUDZUCZLUDZWBAWLLAWHWKAWHUEZWJMWNWIVTWNWIUEZV
    
RVQVRGPZGPZVQVSWONUBZOUBZWRGPZGPZWSQZOERNERZWQVQQZAXCWHWIAWCWEWCGPZGPZWEQZC
    
ERBERXCABCDEFGHIJKUFXGXBWRWEWRGPZGPZWEQBCNOEEBNSZXFXIWEXJWCWRXEXHGXJUGWCWRW
    
EGUHUJUKCOSZXIXAWEWSXKXHWTWRGWEWSWRGULTXKUGUMUNUOUPZWOXDVRWSVRGPZGPZWSQXBNO
    
VRVQEEENMSZXAXNWSXOWRVRWTXMGXOUGWRVRWSGUHUJUKWSVQQZXNWQWSVQXPXMWPVRGWSVQVRG
    
ULTXPUGUMWNWIUQZWOXOUEEURWOFUSUIZWHWHVQEUIAXRWHWIJUPAWHWIUTZXSEFVPVPGHIVKVA
    
VBVCWOWPVRVRGWOVQVPVRVPGPZGPZGPZWPVRWOYAVRVQGWOXCYAVRQZXLWOYCVPWSVPGPZGPZWS
    
QXBNOVPVREEENLSZXAYEWSYFWRVPWTYDGYFUGWRVPWSGUHUJUKOMSZYEYAWSVRYGYDXTVPGWSVR
    
VPGULTYGUGUMXSWOYFUEEURXQVBVCTWOWRWSGPZWRUAUBZWSGPZGPZGPZYIQZUAEROERNERZYBV
    
RQZAYNWHWIAWCWEGPZWCDUBZWEGPZGPZGPZYQQZDERCERBERYNKUUAYMWRWEGPZWRYRGPZGPZYQ
    
QYHWRYQWSGPZGPZGPZYQQBCDNOUAEEEXJYTUUDYQXJYPUUBYSUUCGWCWRWEGULWCWRYRGULUJUK
    
XKUUDUUGYQXKUUBYHUUCUUFGWEWSWRGUHXKYRUUEWRGWEWSYQGUHTUJUKDUASZUUGYLYQYIUUHU
    
UFYKYHGUUHUUEYJWRGYQYIWSGULTTUUHUGUMVDUOUPWOWHWHWIYNYOUCXSXSXQYMYOVPWSGPZVP
    
YJGPZGPZYIQVQVPYIVPGPZGPZGPZYIQNOUAVPVPVREEEYFYLUUKYIYFYHUUIYKUUJGWRVPWSGUL
    
WRVPYJGULUJUKOLSZUUKUUNYIUUOUUIVQUUJUUMGWSVPVPGUHUUOYJUULVPGWSVPYIGUHTUJUKU
    
AMSZUUNYBYIVRUUPUUMYAVQGUUPUULXTVPGYIVRVPGULTTUUPUGUMVEVAVCVFTVFVGVHVGVHWBW
    
HWAUCZLUDWMWALEVIUUQWLLWAWKWHVTMEVIVJVLVMVNVTWGWDVSQLMBCEELBSZVQWDVSUURVPWC
    VPWCGUURUGZUUSUJUKMCSZVSWFWDUUTVRWEVRWEGUUTUGZUVAUJVOUNUO $.
$}

> Yes, I'm surprised that this is the case, probably shows the lack of 
intuition on my side. When I showed the problem set to Mario, he suggested 
rewriting some statements with class variables, i.e. instead of* "A. a e. B 
A. b e. B ( a .o. b ) = ( b .o. a)" *one can introduce *"X e. B"* and *"Y 
e. B"* as hypotheses and write *"( X .o. Y ) = ( Y .o. X )"*. In the end I 
did that only for a couple of first problems, since I wasn't sure how these 
additional hypotheses work with scoping etc. Thierry is using that 
technique in his repository, yet it seems the overall proof length is also 
large.

I wonder how it looks on the other proof assistants. It seems an 
interesting example related to the topic of de Bruijn factors and the 
difficulty of proving theorems formally vs. informally.
Il giorno domenica 8 dicembre 2024 alle 22:10:02 UTC+1 Gino Giotto ha 
scritto:

> Ninth theorem proved:
>
> ${
>   $d x y z a b v B $.  $d x y z a b v .o. $.  $d v ph $.
>   mendpadm.a $e |- B = ( Base ` M ) $.
>   mendpadm.b $e |- .o. = ( +g ` M ) $.
>   mendpadm.d $e |- ( ph -> M e. Mgm ) $.
>   mendpadm.e $e |- ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. 
> ( x .o. ( z .o. y ) ) ) = z ) $.
>   $( First part of ~ mendpadmlem5 $)
>   mendpadmlem5a $p |- ( ph -> A. x e. B ( x .o. ( x .o. x ) ) = x ) $=
>     ( vv va vb cv co wceq wral weq id wcel wa impac mendpadmlem4 adantr 
> oveq12d
>     idd oveq2 eqeq1d oveq1 oveq2d eqeq12d cbvral2vw sylib rspc2v sylc 
> ralrimiva
>     cbvralvw ) 
> ALOZUSUSGPZGPZUSQZLERBOZVCVCGPZGPZVCQZBERAVBLEAUSEUAZUBZVGVGUBMO
>     
> ZNOZVIGPZGPZVJQZNERMERZVBAVGVGAVGUGUCVHVCCOZVCGPZGPZVOQZCERBERZVNAVSVGABCDE
>     
> FGHIJKUDUEVRVMVIVOVIGPZGPZVOQBCMNEEBMSZVQWAVOWBVCVIVPVTGWBTVCVIVOGUHUFUICNS
>     
> ZWAVLVOVJWCVTVKVIGVOVJVIGUJUKWCTULUMUNVMVBUSVJUSGPZGPZVJQMNUSUSEEMLSZVLWEVJ
>     
> WFVIUSVKWDGWFTVIUSVJGUHUFUINLSZWEVAVJUSWGWDUTUSGVJUSUSGUJUKWGTULUOUPUQVBVFL
>     BELBSZVAVEUSVCWHUSVCUTVDGWHTZWHUSVCUSVCGWIWIUFUFWIULURUN $.
>
>   $d a b ph $.
>   $( Second part of ~ mendpadmlem5 $)
>   mendpadmlem5b $p |- ( ph -> A. x e. B ( ( x .o. x ) .o. x ) = x ) $=
>     ( vv va vb cv co wceq wral weq oveq12d wcel wa mendpadmlem4 adantr id 
> oveq2
>     eqeq1d oveq1 oveq2d eqeq12d cbvral2vw sylib cmgm w3a 3anim1i 3anidm23 
> mgmcl
>     simplr simpr eqcomd mendpadmlem5a cbvralvw rspcdva ad2antrr eqtr3d 
> rspcimdv
>     syl rspcdv mpd ralrimiva sylibr ) 
> ALOZVLGPZVLGPZVLQZLERBOZVPGPZVPGPZVPQZBER
>     
> AVOLEAVLEUAZUBZMOZNOZWBGPZGPZWCQZNERZMERZVOWAVPCOZVPGPZGPZWIQZCERBERZWHAWMV
>     
> TABCDEFGHIJKUCUDWLWFWBWIWBGPZGPZWIQBCMNEEBMSZWKWOWIWPVPWBWJWNGWPUEZVPWBWIGU
>     
> FTUGCNSZWOWEWIWCWRWNWDWBGWIWCWBGUHUIWRUEUJUKULWAWGVOMVMEWAFUMUAZVTVTUNZVMEU
>     
> AAVTWTAWSVTVTJUOUPEFVLVLGHIUQVGWAWBVMQZUBZWFVONVLEAVTXAURXBNLSZUBZWEVNWCVLX
>     
> DWBVMWDVLGWAXAXCURZXDVLVMGPZWDVLXDVLWCVMWBGXDWCVLXBXCUSZUTXDWBVMXEUTTWAXFVL
>     
> QZXAXCWAWBWBWBGPZGPZWBQZXHMEVLMLSZXJXFWBVLXLWBVLXIVMGXLUEZXLWBVLWBVLGXMXMTT
>     
> XMUJWAVPVQGPZVPQZBERZXKMERAXPVTABCDEFGHIJKVAUDXOXKBMEWPXNXJVPWBWPVPWBVQXIGW
>     
> QWPVPWBVPWBGWQWQTTWQUJVBULAVTUSVCVDVETXGUJVHVFVIVJVSVOBLEBLSZVRVNVPVLXQVQVM
>     VPVLGXQVPVLVPVLGXQUEZXRTXRTXRUJVBVK $.
>
>   $( Lemma for mendpadm. Multiplication of ` x ` by ` x .o. x ` gives ` x 
> ` . $)
>   mendpadmlem5 $p |- ( ph -> A. x e. B ( ( x .o. ( x .o. x ) ) = x /\ ( ( 
> x .o. x ) .o. x ) = x ) ) $=
>     ( cv co wceq wral wa mendpadmlem5a mendpadmlem5b r19.26 sylanbrc ) 
> ABLZUAUA
>     GMZGMUANZBEOUBUAGMUANZBEOUCUDPBEOABCDEFGHIJKQABCDEFGHIJKRUCUDBEST $.
> $}
>
> Il giorno domenica 8 dicembre 2024 alle 13:54:02 UTC+1 savask ha scritto:
>
>> > As a side note, Tirix is now close to completing the proof of the 
>> Eckmann-Hilton argument, and although his version is better organized than 
>> mine, it still looks pretty long. I guess now we can say that the short 
>> proof on Wikipedia doesn't convey a good idea about the amount of work 
>> needed to accomplish that task.
>>
>> Yes, I'm surprised that this is the case, probably shows the lack of 
>> intuition on my side. When I showed the problem set to Mario, he suggested 
>> rewriting some statements with class variables, i.e. instead of* "A. a 
>> e. B A. b e. B ( a .o. b ) = ( b .o. a)" *one can introduce *"X e. B"* 
>> and *"Y e. B"* as hypotheses and write *"( X .o. Y ) = ( Y .o. X )"*. In 
>> the end I did that only for a couple of first problems, since I wasn't sure 
>> how these additional hypotheses work with scoping etc. Thierry is using 
>> that technique in his repository, yet it seems the overall proof length is 
>> also large.
>>
>> I plan to add another 3 "bonus" tasks near the end of next week, asking 
>> to prove the Mendelsohn-Padmanabhan identity in a boolean group (so we get 
>> a full characterization). Again, this is trivial mathematically but I'm not 
>> quite sure it will be trivial in metamath, although we have all the 
>> required definitions like group exponent (gEx) ready.
>>
>

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/41cbff26-2400-46e4-862f-88bcb35fa0d8n%40googlegroups.com.

Reply via email to