One theorem left:

${
  $d x y a b B $.  $d x y a b .o. $.  $d M a b $.
  mendpadmbi.a $e |- B = ( Base ` M ) $.
  mendpadmbi.b $e |- .o. = ( +g ` M ) $.
  $( Lemma for mendpadmbi. In a group of exponent dividing 2 we have ` x 
.o. x .o. y = y ` for all ` x ` and ` y ` . $)
  mendpadmbilem5a $p |- ( ( M e. Grp /\ ( gEx ` M ) || 2 ) -> A. x e. B A. 
y e. B ( x .o. ( x .o. y ) ) = y ) $=
    ( va vb wcel cfv c2 wa cv co wceq wral eqid 3ad2ant2 3eqtr3rd cgrp cgex 
wbr
    cdvds c0g cmg gexid adantl w3a 3anan32 gexdvdsi eqcomd sylbir eqtr3d 
adantr
    mulg2 oveq1d grplid ad4ant14 simplll simplr simpr grpass syl13anc 
ralrimiva
    weq id oveq1 oveq12d eqeq1d oveq2 oveq2d eqeq12d cbvral2vw sylib ) 
DUAJZDUB
    
KZLUDUCZMZHNZVTINZEOZEOZWAPZICQZHCQANZWFBNZEOZEOZWGPZBCQACQVSWEHCVSVTCJZMZW
    
DICWLWACJZMZDUEKZWAEOZVTVTEOZWAEOZWAWCWNWOWQWAEWLWOWQPWMWLVQVTDUFKZOZWOWQWK
    
WTWOPVSVTWSVQDCWOFVQRZWSRZWORZUGZUHWLVPWKVRUIZWTWQPVPWKVRUJXELVTWSOZWOWQWTV
    
TWSVQDLCWOFXAXBXCUKWKVPXFWQPVRCEWSDVTFXBGUPSWKVPWOWTPVRWKWTWOXDULSTUMUNUOUQ
    
VPWMWPWAPVRWKCEDWAWOFGXCURUSWNVPWKWKWMWRWCPVPVRWKWMUTVSWKWMVAZXGWLWMVBCEDVT
    
VTWAFGVCVDTVEVEWDWJWFWFWAEOZEOZWAPHIABCCHAVFZWCXIWAXJVTWFWBXHEXJVGVTWFWAEVH
    VIVJIBVFZXIWIWAWGXKXHWHWFEWAWGWFEVKVLXKVGVMVNVO $.

  $( Lemma for mendpadmbi. In an abelian group of exponent dividing 2 we 
have ` x .o. x .o. y = y ` for all ` x ` and ` y ` . $)
  mendpadmbilem5 $p |- ( ( M e. Abel /\ ( gEx ` M ) || 2 ) -> A. x e. B A. 
y e. B ( x .o. ( x .o. y ) ) = y ) $=
    ( cabl wcel cgrp cgex cfv c2 cdvds wbr cv co wceq wral ablgrp sylan
    mendpadmbilem5a ) DHIDJIDKLMNOAPZUCBPZEQEQUDRBCSACSDTABCDEFGUBUA $.
$}

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/d47c53d5-29f8-4159-8a59-e9eb9f7f1418n%40googlegroups.com.

Reply via email to